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Abstract. In this study, we consider the field data with it censored of two models of desktop computers
manufactured by one company that both units are tan 3,000,000. To deal with this type of dataddability
analysis, we consider the Weibull model. Severahods such as the maximum likelihood estimation BYilia

the Differential Evolution (DE) algorithm and theectation—Maximization (EM) algorithm, and the Baian
approach via Lindley’s approximation and Markov ®Hdonte Carlo (MCMC) are used to estimate the \Wtkib
parameters. Additionally, the confidence intervaisthese estimators are obtained. The field degauaed to
illustrate the applications. The results show thatBayesian approach with Lindley approximatiotpetforms

the other methods in term of the mean of absoletegmtage error in most cases.
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1. INTRODUCTION

Predicting failure rate for desktop computers frtm
field return data is an important task for
manufacturers. The design capabilities and manurfiact
technologies for desktop computers are continuowstyaded,
subsequently increasing consumer demands for iélab
However, the calculations of the lifespan and Md&ame
Between Failure (MTBF) may differ substantiallyfiaactual
conditions. This can lead to erroneous estimatéiseoproduct
maintenance applications, warranty periods, andespart
amounts. The MTBF of a desktop computer is apprateéty
5 years at normal conditions from an acceleratés tést.
However, this claim should be verified by the attifa data
based on the field return data.

In general, the two-parameter Weibull distributibas

been widely used in reliability engineering. Numeso

methods such as maximum likelihood estimator (MLonR-

censoring can be found in Gomez et al. (2004), Kakiy and
Krivtsov (2005), Kundu (2008). lyer et al. (2009¢pented the
analysis of interval/middle censored data for thpomential

computer model. The sample size in above published studitsss than

1000. Based on our best knowledge, there is no workhe
reliability analysis of field return data with cemed and
interval data that the sample size is more tharilliom This
type of data is occurred in big data environmehe Volume
of data is huge.

In this study, we focus on the field return datehwi
interval censored. We investigate the performariachfferent
methods including the MLE via Differential Evolutiqd DE)
algorithm, EM algorithm and Bayesian estimatiorestimate
the Weibull model for the field data with censoeedl interval.

2.WIEBULL MODEL

In this section, the Weibull model is consideredfiiing

parametric method, and Bayesian approach have been

proposed to obtain the estimates of the two-pamanveeibull
distribution under complete, type-l censoring,
censoring, multiple censoring, progressive cengonmiddle
censoring, and interval censored data (Murthy gt24104).

The MLE method for the Weibull model under interval

censored can be found in Flygare et al. (1985).eXpectation
maximization (EM) algorithm for estimating the Welb
parameters based on the
transformation for interval censored data can hmdoin Ng
and Wang (2009) and Tan (2009). The Bayesian estiméor
the Weibull model with interval censored or progres

Hbe

the field return data with interval censored. WitHailure t

erminated datat£f t f), m multiple-censored data

’t2,f""‘

(hslpssitms ), and n failure intervals

[(a,by), (@2,by),.... 6 B, )], the likelihood function is

Weibull-to-exponential given py

L=|j f(ti,f)ﬂ[R(tj,s)]El[R(ak)_R(bK)], 1)



where f(.) and R(.) are probability density function and the

reliability function, respectively. It should be ted that
Equation (1) can cover the analyses for completa ia= n
= 0), Type-l censoringriz0 andn = 0), Type-Il censoring
(m=n=0 and a fixed value @}, multiple censoringrn(= 0),

and failure interval G # 0).

The reliability function and the probability densfuncti
on of the two-parameter Weibull model are given by

R(t; 3,6) =’ (2)
F(t5.6)= g’i,t”‘le‘“’g)" (3)

where t>0, £>0,6>0. The shape parametgr is also
called the “characteristic life”. Thus, the faBurate function

become%(t;gug):ﬂ;i/:. The MTBF of Weibull model is

derived by
@ _ Ly

MTBF =[e @ dt=ar(1+ %) (4)
0

where [([) is agamma function.
3. PARAMETERSESTIMATION

3.1 MLE via DE algorithm

Using equation (1), the log-likelihood functios esta

blished as:
[ élti[’;f + igltfs
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The maximum likelihood estimates gf and & are

obtained by setting the first partial derivativdsquation (5)
to zero with respect top and 0, respectively. These
simultaneous equations are given by:
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Newton-Raphson iteration is employed to solve aquat

ns (6) and (7). However, the Newton-Raphson algorits
very sensitive to the initial values of the two gqaeters.
Recently, evolution algorithms such as the part®harm
optimization, cross entropy and DE have been sstags
used to estimate the parameters of the Weibull mnackd

Weibull model for censored data. The asymptotidavere-

covariance matrix ofd and g is obtained by inverting the

Fisher information matrix, — EIZ 9%In L:l ij=12 where

0608
6,=Band 6,=6. Thus, we have

var(B) Cov(B,6) ]:
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Thus, an approximate @-100% confidence intervals fof
and [ are given by:

,@i Z%\/Var([?) and 6+ Z%\/Qar(é’)

is the 100(1& /2) percentile of a standard normal

(9)

where Z,,
distribution.

DE is a search heuristic that was introduced bynSaod
Price (1997). It has been successfully appliedviide variety
of fields, from computational physics to operatisasearch.
DE belongs to the class of genetic algorithms tedt the
biology-inspired operations of crossover, mutaticamd
selection on a population to minimize an objecfivection

over the course of successive generations. DE flessting-



point instead of bit-string encoding on populatimembers,
and arithmetic instead of logical operations ination. It has
several advantages such as its simple structuse, eéause,
speed, and robustness. The DE procedure is sunatdaaiz
follows. The variable NP represents the numberashmeter
vectors in the population. At generation 0, NP gasesthe
optimal parameter value, and vectors are made waimgpm
values between the lower and upper bounds. Eactraggim

involves the creation of a new population from therent

population membersxi,g, wherei indexes the vectors amg

indexes the generation. This is accomplished using

differential mutation of the population memberdrial mutant

parameter vector, is derived by

vV, = (10)

g

Xro +F X(Xrl_xrz)’

where X, , X1 , andX;, are random vectofs,is a

positive factor and F [J (0,1) . After the first mutation
operation, the mutation is continued until eithes mutation
length has been made @nd > CR, whereCR is a crossover
probability, where CR[0,1]

CR controls the fraction of the parameter valuesdnatcopied

. The crossover probability

from the mutant. The objective function value agsed with
the children is then determined. If a trial vedtas an equal or
lower objective function value than the previoustoe, it
replaces the previous vector ire thopulation; otherwise, the
previous vector remains. The choice\&f F, andCR depend
on the specific problem. Price et al. (2006) sutggethat the
number of parentdNP should be 10 times the number of

parameters. Further, they suggested 0.8 andCR=0.9.

3.2 EM algorithm

we need to treat this problem as a missing valigblp
em. The EM algorithm has two steps. The first stepg

he E-step, where the ‘pseudo-likelihood’ functian form

ed from the likelihood function, by replacing thessing

observations with their corresponding expectediesl T
he second step of the EM algorithm is the M-stepemv
e the ‘pseudo- likelihood’ function is maximized tmm

pute the parameters for the next iteration.

1)
are denoted by {z k = 1,2,...

likelihood function is established as

n}, then the pseudo log-

INLoonpiete =(F +m+n)In S—(r +m+n) Sin6+(58-1) ilnti,f + g Inzj s+ ﬁ Inz,
i=1 j=1 k=1
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where
-[ ,Btﬁ _( )/7
=E(t|t>t )=—"—TF——
" e_(tl 19 and
B _ s
j ?’3 e(g) dt
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2) It involves maximization of pseudo log-

likelihood function (11) with respect andd to compute the

M-step:

next iterates.
Let (g 6" be the estimate ofp g) at the I-th stage
of the EM algorithm, then(g!*b g(*») can be obtaine

d by maximizing Equation (11) with respect fband 6.

For fixed S, the maximum of|n B with respect to
complete

We propose to use the EM algorithm to compiite t 6 occurs atg!*?(g), where

e MLEs of a and L. In implementing the EM algorithm,

E-step: Suppose the interval-censored observations
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This result indicates thag!*?(g) is unique and maxim

izes equation (11) with a givef. Moreover, gi*9 can

be obtained by maximizingn Lcon‘plae’ the ‘pseudo-profil

e log-likelihood function’, with respect t@. Using simil

ar argument as the Theorem 2 of Kundu (2008), it ca
be shown that| Lcomplete(ﬂig(Hl)(ﬂ)) is an unimodal func

tion of B, with an unique mode. Therefore, (") ma
ximizes |n meae(ﬁﬂ('*l)('g)), then gD is unique. Th

e maximization of|p meplae(ﬂ,gﬂﬂ)(ﬂ)) with respect to

[ can be performed by solving a fixed point type agu
on g¥(B)=p, where
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Therefore, simple iterative process can be usedotopu
te (B(I+1)’9(I+1)) from (ﬁ(l),g(l))'

3.3 Bayesian

m(61c,d)= T, @:0,d)= d* )eﬂ 4 9> 0

The joint posterior distribution 06 and £ is obtai

ned as
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Using Lindley’'s approximation, the posterior Bayes

7 (6,81t)=

H(ﬂ)rj

estimator of an arbitrary functiow(@,3) is derived as

1
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L= - ,andL,, = o . The second and third partial de
rivatives of equation (5) with respect@@ndp are given in A
ppendix 1.
4. EXAMPLES

Example 1: We analyzed the field return data fakttmp
computers from March 2011 to August 2012. Over fihst

Following the approaches of Berger and Sun (1993)ears, 3,204,827 desktop computers have been awttithe

and Kundu (2008), when both the parameters arenaunk
wn, it is assumed that bofh and 6 have gamma priors
and they are independently distributed.

m(Blab)=fe (Ba,b)= ()ﬂa‘l 78>0

maintenance provider receives 132,292 of these aterpfor
repair.

As shown in Table 1, the parameter estimates biitte
via DE algorithm are obtained ag =1.0499 and 6@ =
5442.5. And the 95% confidence intervalsfadnd  ared
are (1.0446, 1.0552) and (5358.54, 5526.47). Thanpater
estimates by the MLE via EM algorithm are obtaiaedlé =
1.0499 and @ =5441.6. And the 95% confidence intervals of
B and 6 are (1.0446, 1.0552) and (5357.72, 5525.48). The
Bayes estimates ¢fand by Lindley approximation method



are ,5’ =1.0499 andé =5442.62. And the 95% confidence

intervals of 8 and & are (1.0473, 1.0524) and (5422.83,

5462.41). The estimates pand 8 by Markov Chain Monte

As shown in Table 2, the MLE via DE algorithm oéth
Weibull model are obtained a;@ = 1.039909 andd =
6002.541, the approximate 95% confidence intenaais

Carlo method are,é =1.0499 and@ =5442.52. And the 95% (1.0360, 1.0438) and (5941.91, 6063.17) with AIC =

confidence intervals of g and € are (1.045, 1.055) and
(5356, 5525).

The AIC values of the MLE via DE algorithm, MLE via
EM algorithm, Lindley approximation and Markov Chai
Monte Carlo are 1678349.845, 1678349.847, 167835%9.8
and 1678349.845, respectively. Additionally, the REAvalues
of the MLE via DE algorithm, MLE via EM algorithrhjndley
approximation and Markov Chain Monte Carlo are 552,
1.5262%, 1.5255%, and 1.5258%, respectively. Thesalts
indicate that the Lindley approximation method @ufprms
the other methods.

Example 2: We analyzed the field return data fakttmp
computers from July 2012 to December 2014. Overptst
years, 3,556,433 desktop computers have been aaidthe
maintenance provider receives 244,678 of these aterpfor
repair.

Table 1: Comparison results for example 1.

3842887.6111; The MLE via EM algorithm are /é =1.04 and
@ =6000.5, the confidence intervals are (1.0361439) and
(5939.95, 6061.05) with AIC 3842887.6172; The Lindley
approximation are,é = 1.03991 and @ = 6002.609, the
confidence intervals are (1.0386, 1.0412) and (5883
6011.34) with AIC=3842887.6112; The Markov Chain Monte
Carlo are ,5’ = 1.03998 andfd = 6002.83, the confidence
intervals are (1.036, 1.044) and (5943, 6063) witl =
3842887.625 for desktop computers.

In this example, evaluation of MAPE under MLE vi& D
algorithm, MLE via EM algorithm, Lindley approximan and
Markov Chain Monte Carlo are 1.1002%, 1.1009%, 018,
1.0992%, respectively. This result indicates thet Markov
Chain Monte Carlo methoperforms well when it compares
other methods in this study.

Methods 6 B AIC MAPE
MLE via DE algorithm (5355‘;2'55526‘ o L0 414%?2?0552) 1678349.8452| 1.5257%
MLE via EM algorithm (5357?);1;,15.225.48) (1.0542?21).90552) 1678349.847 1.5262%
Lindley approximation (54225;;,2'56562_41) (1_0417'2?21)_90524) 1678349.8453| 1.5255%
Markov Chain Monte Cal (53?&2555225) (1_022142_9055) 1678349.8454| 1.5258%
Table 2: Comparison results for example 2.
Methods é ,[3 AIC MAPE
MLE via DE algorithm - 416.58]?2('35063.17) (1.03168,3390 ssg) | 38428876111 11002%
MLE via EM algorithm (59396.3850,06.3?)61.05) (1.0361i(,)i.0439) 3842887.6172| 1.1009%
Lindley approximation (59936.3;)8’26%11‘34) (1.0315';%:,3?[?0412) 3842887.6112| 1.1001%
Markov Chain Monte Car (596403(?26'263) (1.013;2,32?0 42 3842887.625| 1.0992%4

5. CONCLUSIONS

This study used the field return data from a dgskto
product to investigate the reliability of desktaprputers. The
goodness-of-fit test performed on the field retdata showed
that Burr XII distribution was the most optimal fibre failure

probability distributions. In the desktop persomamputer
market, maintenance providers need determine thee garts
of desktop computers. However, the design capiasiliand
manufacturing technologies for desktop computerg ar
continuously upgraded. Therefore, it is an impdrtask to
predict the failure rate of computers to reduce dbsts for
repairs. We believe that the results of this stcaty benefit the
important market players, such as consumers, eetaibnd



manufacturers, regarding computer quality, saleatesy,
after-sales warranty services packaging, and maturfag
process improvement.
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