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Abstract. In this study, we consider the field data with interval censored of two models of desktop computers 
manufactured by one company that both units are more than 3,000,000. To deal with this type of data for reliability 
analysis, we consider the Weibull model. Several methods such as the maximum likelihood estimation (MLE) via 
the Differential Evolution (DE) algorithm and the Expectation–Maximization (EM) algorithm, and the Bayesian 
approach via Lindley’s approximation and Markov Chain Monte Carlo (MCMC) are used to estimate the Weibull 
parameters. Additionally, the confidence intervals for these estimators are obtained. The field data are used to 
illustrate the applications. The results show that the Bayesian approach with Lindley approximation outperforms 
the other methods in term of the mean of absolute percentage error in most cases.  
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1. INTRODUCTION 
 

Predicting failure rate for desktop computers from the 
field return data is an important task for computer 
manufacturers. The design capabilities and manufacturing 
technologies for desktop computers are continuously upgraded, 
subsequently increasing consumer demands for reliability. 
However, the calculations of the lifespan and Mean Time 
Between Failure (MTBF) may differ substantially from actual 
conditions. This can lead to erroneous estimates of the product 
maintenance applications, warranty periods, and spare part 
amounts. The MTBF of a desktop computer is approximately 
5 years at normal conditions from an accelerated life test. 
However, this claim should be verified by the actual life data 
based on the field return data. 

In general, the two-parameter Weibull distribution has 
been widely used in reliability engineering. Numerous 
methods such as maximum likelihood estimator (MLE), non-
parametric method, and Bayesian approach have been 
proposed to obtain the estimates of the two-parameter Weibull 
distribution under complete, type-I censoring, Type-II 
censoring, multiple censoring, progressive censoring, middle 
censoring, and interval censored data (Murthy et al., 2004). 
The MLE method for the Weibull model under interval 
censored can be found in Flygare et al. (1985). The expectation 
maximization (EM) algorithm for estimating the Weibull 
parameters based on the Weibull-to-exponential 
transformation for interval censored data can be found in Ng 
and Wang (2009) and Tan (2009). The Bayesian estimation for 
the Weibull model with interval censored or progressive 

censoring can be found in Gomez et al. (2004), Kaminskiy and 
Krivtsov (2005), Kundu (2008). Iyer et al. (2009) presented the 
analysis of interval/middle censored data for the exponential 
model. The sample size in above published studies is less than 
1000. Based on our best knowledge, there is no work on the 
reliability analysis of field return data with censored and 
interval data that the sample size is more than 1 million. This 
type of data is occurred in big data environment. The volume 
of data is huge.  

In this study, we focus on the field return data with 
interval censored. We investigate the performance of different 
methods including the MLE via Differential Evolution (DE) 
algorithm, EM algorithm and Bayesian estimation to estimate 
the Weibull model for the field data with censored and interval.  
 
2. WIEBULL MODEL 

 

In this section, the Weibull model is considered for fitting

 the field return data with interval censored. With r failure t

erminated data (t1, f ,t2, f ,...,tr, f
 ), m multiple-censored data 

( 1, 2, ,, ,...,s s m st t t  ) ,  a n d  n  f a i l u r e  i n t e r v a l s  

[ 1 1 2 2( , ),( , ),...,( , )n na b a b a b ], the likelihood function is  

given by 
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where f(.) and R(.) are probability density function and the 

reliability function, respectively. It should be noted that 

Equation (1) can cover the analyses for complete data (m = n 

= 0), Type-I censoring ( 0m ≠  and n = 0), Type-II censoring 

(m = n = 0 and a fixed value of r), multiple censoring (n = 0), 

and failure interval ( 0n ≠ ). 

The reliability function and the probability density functi
on of the two-parameter Weibull model are given by 

R(t;β,θ ) = e−(t /θ )β

      

(2) 

f (t;β,θ ) = β
θ β tβ−1e−(t /θ )β

      

(3) 

where t ≥ 0, β > 0,θ > 0 . The shape parameterβ   is also 

called the “characteristic life”.  Thus, the failure rate function 
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where Γ(⋅)  is a gamma function. 

 

3. PARAMETERS ESTIMATION 

 

3.1 MLE via DE algorithm 

   Using equation (1), the log-likelihood function is esta

blished as: 
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The maximum likelihood estimates of β  and θ  are 

obtained by setting the first partial derivatives of equation (5) 
to zero with respect to β and θ, respectively. These 
simultaneous equations are given by: 
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Newton-Raphson iteration is employed to solve equatio

ns (6) and (7). However, the Newton-Raphson algorithm is 

very sensitive to the initial values of the two parameters. 

Recently, evolution algorithms such as the particle swarm 

optimization, cross entropy and DE have been successfully 

used to estimate the parameters of the Weibull and mixed 

Weibull model for censored data. The asymptotic variance-

covariance matrix of θ  and β  is obtained by inverting the 

Fisher information matrix,
2 ln
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(8) 
Thus, an approximate (1-α)100% confidence intervals for θ  
and β  are given by: 

β̂ ± Zα
2

Var(β̂ ) and θ̂ ± Zα
2

Var(θ̂ )
                

(9) 

where 
/2Zα
is the 100(1-α /2) percentile of a standard normal 

distribution. 

DE is a search heuristic that was introduced by Storn and 

Price (1997). It has been successfully applied in a wide variety 

of fields, from computational physics to operations research. 

DE belongs to the class of genetic algorithms that use the 

biology-inspired operations of crossover, mutation, and 

selection on a population to minimize an objective function 

over the course of successive generations. DE uses floating-



 

 

point instead of bit-string encoding on population members, 

and arithmetic instead of logical operations in mutation. It has 

several advantages such as its simple structure, ease of use, 

speed, and robustness. The DE procedure is summarized as 

follows. The variable NP represents the number of parameter 

vectors in the population. At generation 0, NP guesses the 

optimal parameter value, and vectors are made using random 

values between the lower and upper bounds. Each generation 

involves the creation of a new population from the current 

population members ,i gx , where i indexes the vectors and g 

indexes the generation. This is accomplished using a 

differential mutation of the population members. A trial mutant 

parameter vector ,i gv is derived by 

, 1 2( ),i g ro r rv x F x x= + × −
        

(10) 

where  ,  , and   are random vectors, F is a 

positive factor and  . After the first mutation 

operation, the mutation is continued until either the mutation 

length has been made or rand > CR, where CR is a crossover 

probability, where  . The crossover probability 

CR controls the fraction of the parameter values that are copied 

from the mutant. The objective function value associated with 

the children is then determined. If a trial vector has an equal or 

lower objective function value than the previous vector, it 

replaces the previous vector in the population; otherwise, the 

previous vector remains. The choices of NP, F, and CR depend 

on the specific problem. Price et al. (2006) suggested that the 

number of parents NP should be 10 times the number of 

parameters. Further, they suggested that F = 0.8 and CR = 0.9.  

 

3.2 EM algorithm 

    We propose to use the EM algorithm to compute th

e MLEs of α and λ. In implementing the EM algorithm,

 we need to treat this problem as a missing value probl

em. The EM algorithm has two steps. The first step is t

he E-step, where the ‘pseudo-likelihood’ function is form

ed from the likelihood function, by replacing the missing

 observations with their corresponding expected values. T

he second step of the EM algorithm is the M-step, wher

e the ‘pseudo- likelihood’ function is maximized to com

pute the parameters for the next iteration. 

1) E-step: Suppose the interval-censored observations 

are denoted by {zk; k = 1,2,…,n}, then the pseudo log-

likelihood function is established as 
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2) M-step: It involves maximization of pseudo log-

likelihood function (11) with respect to β and θ to compute the 

next iterates.  

Let ( ) ( )( , )l lβ θ  be the estimate of ( , )β θ  at the l-th stage

 of the EM algorithm, then ( 1) ( 1)( , )l lβ θ+ +   can be obtaine

d by maximizing Equation (11) with respect to β and θ.

 For fixed β, the maximum of ln L
complete
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This result indicates that ( 1)( )lθ β+  is unique and maxim

izes equation (11) with a given β. Moreover, ( 1)lβ +   can 

be obtained by maximizing ln L
complete

, the ‘pseudo-profil

e log-likelihood function’, with respect to β. Using simil

ar argument as the Theorem 2 of Kundu (2008), it can 

be shown that ( 1)ln ( , ( ))l
completeL β θ β+  is an unimodal func

tion of β, with an unique mode. Therefore, if ( 1)lβ +   ma

ximizes ( 1)ln ( , ( ))l
completeL β θ β+ , then ( 1)lβ +  is unique. Th

e maximization of ( 1)ln ( , ( ))l
completeL β θ β+   with respect to 

β can be performed by solving a fixed point type equati

on ( ) ( )lg β β= , where 

( ) ( ) ( ) ( )
, ,,,

1 1 1

( ) ( ) ( ) ( )( ) ,,
1 1 1

( ) ( ) ( ) ( )
, ,

1 1 1

ln ln ( , ) ln ( , )

( , ) ( , )( ) ( )

ln ln ( , ) ln ( , )

r m nl l l k
i f j s kj si f k

i j k
r m nk k k kl j si f l

i j l

r m nl l l l
i f j s k

i j k

t t z z z z

t z zg r m n

t z z

β β β

β β β

β θ β θ

β θ β θβ

β θ β θ

= = =

= = =

= = =


+ +∑ ∑ ∑

−
+ +∑ ∑ ∑= + +

 
+ +∑ ∑ ∑  

 

1−


 
 
 
 
 
 
 
 
                                                                       

(13) 

Therefore, simple iterative process can be used to compu

te ( 1) ( 1)( , )l lβ θ+ +  from ( ) ( )( , )l lβ θ .  

 

3.3 Bayesian 

Following the approaches of Berger and Sun (1993)

 and Kundu (2008), when both the parameters are unkno

wn, it is assumed that both β and θ have gamma priors 

and they are independently distributed. 
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The joint posterior distribution of θ and β is obtai
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Using Lindley’s approximation, the posterior Bayes 

estimator of an arbitrary function ( , )u θ β  is derived as 
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ppendix 1. 

 
4. EXAMPLES  

 
Example 1: We analyzed the field return data for desktop 

computers from March 2011 to August 2012. Over the past 
years, 3,204,827 desktop computers have been sold, and the 
maintenance provider receives 132,292 of these computers for 
repair.  

As shown in Table 1, the parameter estimates by the MLE 
via DE algorithm are obtained as β̂  = 1.0499  and   ̂θ  = 
5442.5. And the 95% confidence intervals of β and   are θ  
are (1.0446, 1.0552) and (5358.54, 5526.47). The parameter 
estimates by the MLE via EM algorithm are obtained as β̂  = 
1.0499 and θ̂  = 5441.6. And the 95% confidence intervals of 
β and θ   are (1.0446, 1.0552) and (5357.72, 5525.48). The 
Bayes estimates of β and   by Lindley approximation method 



 

 

are β̂  = 1.0499 and θ̂  = 5442.62. And the 95% confidence 
intervals of β and θ   are (1.0473, 1.0524) and (5422.83, 
5462.41). The estimates of β and θ  by Markov Chain Monte 
Carlo method are ̂β  = 1.0499 and θ̂  = 5442.52. And the 95% 
confidence intervals of  β and θ   are (1.045, 1.055) and 
(5356, 5525).  

The AIC values of the MLE via DE algorithm, MLE via 
EM algorithm, Lindley approximation and Markov Chain 
Monte Carlo are 1678349.845, 1678349.847, 1678349.845, 
and 1678349.845, respectively. Additionally, the MAPE values 
of the MLE via DE algorithm, MLE via EM algorithm, Lindley 
approximation and Markov Chain Monte Carlo are 1.5257%, 
1.5262%, 1.5255%, and 1.5258%, respectively. These results 
indicate that the Lindley approximation method outperforms 
the other methods. 

Example 2: We analyzed the field return data for desktop 
computers from July 2012 to December 2014. Over the past 
years, 3,556,433 desktop computers have been sold, and the 
maintenance provider receives 244,678 of these computers for 
repair.  

As shown in Table 2, the MLE via DE algorithm of the 
Weibull model are obtained as ̂β   = 1.039909 and θ̂   = 
6002.541, the approximate 95% confidence intervals are 
(1.0360, 1.0438) and (5941.91, 6063.17) with AIC = 
3842887.6111; The MLE via EM algorithm are β̂  = 1.04 and 
θ̂  = 6000.5, the confidence intervals are (1.0361, 1.0439) and 
(5939.95, 6061.05) with AIC = 3842887.6172; The Lindley 

approximation are β̂   = 1.03991 and  ̂θ  = 6002.609, the 
confidence intervals are (1.0386, 1.0412) and (5993.88, 
6011.34) with AIC=3842887.6112; The Markov Chain Monte 

Carlo are β̂   = 1.03998 and ̂θ   = 6002.83, the confidence 
intervals are (1.036, 1.044) and (5943, 6063) with AIC = 
3842887.625 for desktop computers.  

In this example, evaluation of MAPE under MLE via DE 
algorithm, MLE via EM algorithm, Lindley approximation and 
Markov Chain Monte Carlo are 1.1002%, 1.1009%, 1.1001%, 
1.0992%, respectively. This result indicates that the Markov 
Chain Monte Carlo method performs well when it compares 
other methods in this study. 
 

Table 1: Comparison results for example 1. 

Methods θ̂  β̂  AIC MAPE 

MLE via DE algorithm 
5442.50 

(5358.54, 5526.47) 
1.0499 

(1.0446, 1.0552) 
1678349.8452 1.5257% 

MLE via EM algorithm 
5441.6 

(5357.72, 5525.48) 
1.0499 

(1.0446, 1.0552) 
1678349.847 1.5262% 

Lindley approximation 
5442.62 

(5422.83, 5462.41) 
1.0499 

(1.0473, 1.0524) 
1678349.8453 1.5255% 

Markov Chain Monte Carlo
5442.52 

(5356, 5525) 
1.0499 

(1.045, 1.055) 
1678349.8454 1.5258% 

 

Table 2: Comparison results for example 2. 

Methods θ̂  β̂  AIC MAPE 

MLE via DE algorithm 
6002.5 

(5941.91, 6063.17) 
1.0399 

(1.0360, 1.0438) 
3842887.6111 1.1002% 

MLE via EM algorithm 
6000.5 

(5939.95, 6061.05) 
1.04 

(1.0361, 1.0439) 
3842887.6172 1.1009% 

Lindley approximation 
6002.6 

(5993.88, 6011.34) 
1.0399 

(1.0386, 1.0412) 
3842887.6112 1.1001% 

Markov Chain Monte Carlo
6002.8 

(5943, 6063) 
1.0399 

(1.036, 1.044) 
3842887.625 1.0992% 

 
 
5. CONCLUSIONS 
 

This study used the field return data from a desktop 
product to investigate the reliability of desktop computers. The 
goodness-of-fit test performed on the field return data showed 
that Burr XII distribution was the most optimal for the failure 

probability distributions. In the desktop personal computer 
market, maintenance providers need determine the spare parts 
of desktop computers. However, the design capabilities and 
manufacturing technologies for desktop computers are 
continuously upgraded. Therefore, it is an important task to 
predict the failure rate of computers to reduce the costs for 
repairs. We believe that the results of this study can benefit the 
important market players, such as consumers, retailers, and 



 

 

manufacturers, regarding computer quality, sales strategy, 
after-sales warranty services packaging, and manufacturing 
process improvement. 
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