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Abstract. Demand Response (DR) is changes in electricity usage by end-customers from their normal 

consumption patterns in response to incentive payment designed to convince lower electricity usage 

particularly in peak periods. Typically, there are three main players in the DR system; an electric utility 

operator, a set of aggregators, and end-customers. This study presents the model where a set of competing 

aggregators act as mediators between the utility operator and end-customers. The operator aims to minimize 

its operational cost and offers rewards to aggregators. Profit-maximizing aggregators compete to sell DR 

services to the operator and provide compensation to end-customers to modify their desirable consumption 

pattern. Finally, end-customers seek to compromise between compensation from the aggregator and having to 

adjust their electricity usage pattern. The objective of the model is to determine the best set of incentives for 

various time periods to the end-customers in order to satisfy all stakeholders. The DR program is a 

challenging optimization problem especially when the problem-size is very large. Therefore, this paper 

presents an application of Particle Swarm Optimization (PSO) in smart electricity grid demand response 

system. The experimental results show that PSO can be efficiently applied to the problem and provide good 

solutions.  
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1. INTRODUCTION 
 

Demand response (DR) is a change in the power 

consumption profile of an electricity utility customer to 

better match the power supply of the utility operator. Since 

there are limits to what can be achieved on the supply side, 

some generating units can take a long time to come up to 

full power, and some units may be very expensive to 

operate. In addition, demand can be sometimes greater than 

the capacity of all available power plants. Therefore, DR 

seeks to adjust the customer demand instead of increasing 

the power supply capacity. In DR program, the incentive 

payment program is used to convince customers to adjust 

their power consumption profile. Particularly, it is expected 

that customers shift their demand in peak periods to other 

time periods in order to reduce the overall power 

generation cost. 

Typically, there are three main players in the DR 

system; an electric utility operator, a set of aggregators, and 

end-customers. Aggregators are new potential players in the 

electricity market that act as mediators between the utility 

operator and end-users. Since the aggregator is responsible 

for a large amount of total demand in the DR market, it can 

negotiate on behalf of end-users with the operator more 

efficiently. Nowadays, the current role of aggregators 

includes paying a monthly fee to the controlled users in 

order to gain direct control of their electricity usages 

(Gkatzikis et al., 2013).  

In Thailand, the electricity generating authority has 

recently initiated Thailand Demand Response Preliminary 

Project with the purpose to reduce the amount of power 

consumption in some time-periods during the summer. 

However, the load aggregators were not yet considered to 

be included in the DR system. Pasom et al. (2015) studied 



 

the potential of demand response measures of the 

commercial building in Thailand based on the actual test 

from three existing buildings in Bangkok. The results 

showed that some significant power usages can be reduced; 

however, the reduced demand also depended on the level of 

benefit offered to the building. 

There are few studies have been done on the role of 

aggregator in the smart grids DR program. Papavasiliou et 

al. (2010) presented a settlement mechanism using supply 

function bidding for optimizing real time electricity 

consumption schedule in an automated demand response 

control system.  Kim and Thottan (2011) proposed a 

market model where microgrids sell their surplus power to 

a utility via aggregators. Thus, aggregators collect power 

from microgrids and resell it to the utility. Based on this 

two-stage stackelberg game, efficient market equilibrium 

was achieved using the tatonnement process and supply 

function bidding. Gkatzikis et al. (2013) proposed a 

hierarchical market for the smart grid where a set of 

competing aggregators act as intermediaries between the 

utility operator and the end-users. The mathematical model 

was also presents to optimize each of player objective.  

The DR program is a challenging optimization 

problem especially when the problem-size is very large. 

The number end-customers can be up to 10,000 companies, 

and using exact solution methods would be highly time-

consuming. Therefore, metaheuristic approaches maybe 

more preferable to deal with this problem.  

This study presents the first application of Particle 

Swarm Optimization (PSO) in a smart electricity grid 

demand response system. The objective is to determine the 

best set of incentives for various time periods to the end-

customers in order to satisfy all stakeholders. The 

remainders of the paper are organized as follows. Section 2 

presents a problem description. Section 3 describes the 

original PSO framework, and an application of the PSO to 

the demand response program is presented in Section 4. 

The numerical experiments are reported in section 5. 

Finally, conclusion is provided in Section 6. 

 

2. PROBLEM DESCRIPTION 
 

This study is motivated by the problem formulation of 

demand response market (Gkatzikis et al., 2013). In their 

model, an electricity market consisted of three players; one 

utility operator, a set of aggregators A = {1, 2,…, J}, and a 

set of end-users. It was assumed that each customer is 

assigned to a pre-determined aggregator, and the customers 

do not move between aggregators. The problem focused on 

the day-ahead market and assumes that times in one day 

were divided into T equal periods (T = {1, 2,…, T }). The 

demand response market was formulated according to the 

following optimization problems. 

2.1 The Role of Utility Operator 
 

In the utility operator’s point of view, in order to meet 

the total customer demand, the operator has a choice of 

either activating costly power plant or purchasing 

electricity from third parties. Normally, the cost of 

generating electricity (c = c(t)) is vary with time due to 

availability of supply. In a day-ahead market, the total 

customer demand is accumulated as W Watts (∑ 𝑦𝑡𝑡∈𝑇 =
𝑊). It is assumed that a customer is charged by the flat 

pricing policy of fixed price, qf, per Watt. Therefore, on a 

daily basis, an operator receives the total income of qfW 

from customer payment.  

In DR market, it is desirable that the electricity 

consumption pattern of customers will be distributed more 

evenly during the timespan; however the total demand 

during a day remain the same. Since the operator income is 

fixed, the problem of an operator becomes to seek for cost 

minimization. An operator provides rewards λ = {λj ≥ 0 : j ϵ 

A} to the aggregators so that they perform DR on their 

behalf. Particularly, the operator is willing to provide a 

portion �̂� = ∑ λ𝑗𝑗𝜖𝐴  of its DR gain to the aggregators. The 

DR gain (Δc(y(λ)) is the reduction of the power generation 

cost that results from reward λ and is given by equation (1). 

 

∆𝑐(𝑦(λ)) = ∑ ∆𝑐𝑡(𝑦𝑡(λ))
𝑡∈𝑇

 = ∑ [𝑐𝑡
0 − 𝑐𝑡(𝑦𝑡(λ)]

𝑡∈𝑇
 (1) 

 

Where 𝑐𝑡
0 is the power generation cost at timeslot t if no DR 

is applied.  

Therefore, the problem of an operator is formulated as 

the following model in equation (2)-(4) to minimize its 

operational cost.   
 

Min
λ

∑ 𝑐𝑡(𝑦𝑡(λ))

𝑡∈𝑇

+ λ̂∆𝑐𝑡(𝑦𝑡(λ)) (2) 

𝑠. 𝑡.    0 ≤ λ̂ ≤ 1 (3) 

          λ𝑗 ≥ 0                     ,     ∀𝑗 ∈ 𝐴 (4) 

  

The objective function of the operator is to minimize 

both power generation cost and its reward to the aggregators 

for their services. In real-application, it is noted that the 

reward provided to the aggregators depends only on the 

quality of their aggregate DR services.                   
                              

2.2 The Role of Aggregators  
 

Provided that each customer is assigned to an 

aggregator by a contract, Dj is denoted as the total demand 

of all users under aggregator j. In the demand response 



 

market, the aggregators need to provide DR services to the 

operator and guarantee that the end-users reduced their 

electricity bills. 

In particular, each aggregator aims to smooth the 

electricity consumption pattern of its users and receive 

compensation for the cost savings for the operator due to 

the changed consumption pattern. It is assumed that an 

aggregator motivates users to modify their power 

consumption pattern through dynamic compensation per 

unit of power. Thus, an aggregator j provides the 

compensation vector pj = { pj : t ϵ T}. Let dj = { djt : t ϵ T} 

denote the cumulative load of aggregator j at time slot t, 

over all demands in Dj, that results from compensation pj . 

The DR gain (Δc) of an aggregator j does not only 

depend on its own compensation strategy pj, but also the 

compensation strategy of other aggregators which are 

denoted by P-j = ( p1,… pj-1, pj+1,…, pJ ). The objective of 

aggregator j is to maximize its net profit by solving the 

following optimization problem in equation (5) and (6): 

 

Max 
𝑝𝑗

λ𝑗∆𝑐(p𝑗 , P−𝑗) − ∑ 𝑝𝑗𝑡𝑑𝑗𝑡(𝑝𝑗)

𝑡∈𝑇

 (5) 

𝑠. 𝑡.               𝑝𝑗𝑡 ≥ 0    ,      ∀𝑡 ∈ 𝑇 (6) 

 

2.3 The Role of End-Customers  
 

When no DR is applied, the end-user i is assumed to 

have electricity consumption pattern as xi
0 = {xit

0 : t ϵ T}. In 

each day, there are peak periods in which the electricity 

usages are in high level. The aggregators then provide 

monetary compensation in order to motivate users to 

modify their usage patterns to be smoother with the 

assumption that the total demand Wi is fixed and 

independent of the provided compensation. Thus, a user i 

has a fixed daily cost of qfW.  

When DR is applied, the end-user i modifies its usage 

pattern from xi
0 to xi (xi = xit : t ϵ T). Even though a user 

receives monetary compensation, adjusting usage behavior 

causes some dissatisfaction. In the model, the disutility 

function Vit {Vit (xit)  = vi(xit - xi
0)2 } is introduced where 

inelasticity parameter vi of demand i indicates different 

behaviors of diverse users. Small values of vi imply the 

minimal dissatisfaction if their consumption pattern is 

modified. On the other hand, large values of vi denote more 

dissatisfaction of demand modification.  

According to above conditions, the objective of a user 

is to maximize its net payoff which is determined by the 

compensation received from the aggregator minus the 

dissatisfaction as shown in the follow model (equation (7) - 

(9)). 

  

max
𝑥𝑖

∑[𝑥𝑖𝑡𝑝𝑗𝑡 − 𝑉𝑖𝑡(𝑥𝑖𝑡)]

𝑡∈𝑇

 (7) 

𝑠. 𝑡.             𝑥𝑖𝑡 ≥ 0       ,        ∀𝑡 ∈ 𝑇 (8) 

        ∑ 𝑥𝑖𝑡 = 𝑊𝑖𝑡∈𝑇  (9) 

 

In this study, the benchmark scenario of full 

information (Gkatzikis et al., 2013) is adopted. In this 

scenario, the utility operator has global knowledge of all 

system parameters which include electricity consumption 

pattern xi, the inelasticity parameters vi and the set of 

allocated users to each aggregator j. This scenario provides 

insights on how misaligned are the interests of the market 

entities and whether disclosing this information to the 

operator is beneficial for the lower levels. It also serves as a 

benchmark regarding the cost of the operator (Gkatzikis et 

al., 2013).  

Therefore, the problem is formulated as a multilevel 

optimization problem, and three decision levels need to be 

made:  

1) The operator computes the reward for aggregator 

λj  to minimize its operational cost. 

2) The aggregators determine their compensation 

strategy to end-users to maximize their net profit. 

3) The users modify their demand pattern according 

to the compensation provided by the aggregators 

to maximize their net payoff. 

The decision in level 2 and 3 can be merged into one 

optimization problem in order for an aggregator j to 

determine the compensation pj to achieve maximum net 

profit. The merged model is shown in equation (10) and 

(11).   

 

max
𝒑𝑗

{𝜆𝑗 ∑ Δ𝑐𝑡 (∑ 𝑥𝑖𝑡(𝒑𝑗), 𝑷−𝑗

𝑖∈𝐷𝑗

) − ∑ 𝑝𝑗𝑡

𝑇

𝑡=1

𝑇

𝑡=1

∑ 𝑥𝑖𝑡(𝒑𝑗)

𝑖∈𝐷𝑗

} (10) 

𝑝𝑗𝑡 ≥ 0, 𝑥𝑖𝑡 ≥ 0,   ∀𝑖 ∈ 𝐷𝑗 , 𝑡 ∈ 𝛵𝑗 (11) 

 

For the decision in level 1, the operator has to find the 

monetary reward vector λ* that minimizes its operational 

cost. However, the exact impact of its rewards on demand 

distribution is difficult to quantify, since it also involves the 

optimization problems of the lower two levels. In particular, 

the operator needs to know the analytical expression of 

djt(pj(λj)). This problem falls within the class of multi-level 

optimization problems, which are particularly difficult to 

solve. Therefore, in order to characterize the DR solution 

from the operator’s point of view, the reward strategy of the 

operator can be calculated numerically.   
 
 



 

3. PARTICLE SWARM OPTIMIZATION 
 

Particle Swarm Optimization (PSO) is a population 

based random search method that imitates the physical 

movements of the individuals in the swarm as a searching 

mechanism. The original PSO algorithm was proposed by 

Kennedy and Eberhart in 1995. Its concept was originated 

from the behavior of fish schooling or birds flocking. In 

PSO, a solution is represented as a particle, and the 

population of solutions is called a swarm of particles. Each 

particle has two main attributes: position and velocity. The 

key concept of PSO is that each particle learns from the 

cognitive knowledge of its experiences and the social 

knowledge of the swarm to guide the particle to the better 

position. A particle moves to a new position using the 

updated velocity. Once a new position is reached, the best 

position of each particle and the best position of the swarm 

are updated as needed. The velocity of each particle is then 

adjusted based on the experiences of the particle. These 

processes are repeated until a stopping criterion is met. The 

velocity and position in the original PSO are updated and 

formulated as equation (12) and (13).  

 

𝜔𝑖𝑑(𝑡 + 1) = 𝜔𝑖𝑑(𝑡) + 𝑐𝑝𝑢 (𝜓𝑖𝑑
𝑝

− 𝑞𝑖𝑑(𝑡))

+ 𝑐𝑔𝑢 (𝜓𝑖𝑑
𝑔

− 𝑞𝑖𝑑(𝑡)) 

(12) 

𝑞𝑖𝑑(𝑡 + 1) =   𝑞𝑖𝑑(𝑡) + 𝜔𝑖𝑑(𝑡) (13) 

 

Where as 

𝑞𝑖𝑑 : current position of dth dimension of ith particle  

𝜔𝑖𝑑  : velocity of dth dimension of ith particle 

𝜓𝑖𝑑
𝑝

 : personal best position of dth dimension of ith particle 

𝜓𝑖𝑑
𝑔

 : global best position of dth dimension of ith particle 

𝑐𝑝 : weight of personal best position term 

𝑐𝑔 : weight of global best position term 

𝑢 : uniform random number in range [0,1] 

 

Due to its ease of implementation and computational 

efficiency, PSO has been successfully applied and shown 

its effectiveness in many application areas, not only for 

continuous problem domains (Zhang et al., 2007; Sun and 

Gao, 2008; Goh et al., 2010) but also combinatorial 

optimization problems such as scheduling (Chandrasekaran 

et al., 2007; Liu et al., 2007; Zhixiong and Shaomei, 2012) 

and forecasting (AlRashidi and El-Hawary, 2006, 2007).  

 

4. APPLICATION OF PSO TO DEMAND 
RESPONSE PROGRAM 

 

This study presents how PSO can be employed to deal 

with demand response system. First, a solution of the 

problem is represented using particle dimensions in which 

its dimensions are set to be equal to the total number of 

compensation timeslots for all load aggregators. Consider 

an example of two aggregators who provide different 

incentives to the end-users for four periods of time during 

one day. Thus, the number of dimensions is equal to 8. 

Figure 1 illustrates solution representation encoding 

scheme where each value in a particle dimension is initially 

generated with a uniform random number in the 

compensation range.  

 

 

 

Dimension d  1 2 3 4 5 6 7 8 

 5.23 1.97 4.34 2.46 6.71 5.58 6.47 2.87 

 

Figure 1: Solution representation encoding scheme 

 

Since there are two load aggregators in this example, 

in order to transform these numbers into a solution, the first 

four dimensions are assigned to Aggregator 1, and the next 

four dimensions are assigned to Aggregator 2. Then, for 

Aggregator 1, the number in the first dimension becomes 

the compensation of timeslot 1, and the number in the 

second dimension becomes the compensation of timeslot 2, 

and so on until the last compensation is determined. These 

processes are repeated for Aggregator 2.  Finally, as 

shown in Figure 2, the compensation for all timeslots is 

derived, and the objective function can be evaluated.  

 

 

 

Dimension d 1 2 3 4 5 6 7 8 

 5.23 1.97 4.34 2.46 6.71 5.58 6.47 2.87 

Time Period 1 2 3 4 1 2 3 4 

Compensation 5.23 1.97 4.34 2.46 6.71 5.58 6.47 2.87 

 

Figure 2: Solution transformation 
 
5. NUMERICAL EXPERIMENT 
  

In order to evaluate the performances of PSO to the 

DR program, a dataset based on a realistic base-line 

electricity consumption pattern in some region in Thailand 

is generated. The dataset includes the daily electricity usage 

of diverse customers. Based on the model proposed by 
Gkatzikis et al. (2013), the disutility function is adopted 

with an inelasticity parameter vi which is uniformly 

distributed in a range [0, vmax]. It is noted that v = vmax /2 is 

an average inelasticity value.  

This study considers a market of a single utility 

Aggregator 1 Aggregator 2 

Aggregator 1 Aggregator 2 



 

operator, 3 aggregators, and 30 end-customers equally 

allocated among the aggregators. According to the model of 

Gkatzikis et al. (2013), the power generation cost function, 

c(yt) = rtyt, is used, with the corresponding total demand yt 

at each timeslot t. It is noted that rt is the power generation 

cost per unit at each timeslot t. Figure 3 illustrates the 

summation of total demand and consumption pattern across 

a day where no compensation is provided to the users. 

Figure 4 shows the power generation cost of an operator 

associated with the total demand.  

Figure 3: The total demand before applying DR.  

 

Figure 4: The operator’s power generation cost before    

applying DR. 

 

After DR is applied, it is expected some changes in 

the system. Figure 5 illustrates an average best set of 

incentives for various time periods to the end-customers in 

the case when �̂� = 0.9 and inelasticity is low. It can be 

seen that the compensations for electricity consumption of 

the non-peak periods are higher than other periods, so it is 

expected that users modify their behavior.  Figure 6 and 7 

show the effects of DR program on the total demand and 

total operation cost, respectively. It is clearly seen that after 

DR program is applied, the total demand is more evenly 

distributed across a day which allows the consumption 

pattern smoother. In addition, the results show that, in the 

case of low values of inelasticity, the consumption is more 

evenly distributed compared to the case of the high value of 

user inelasticity due to the fact that the users are more 

willing to change their electricity consumption pattern in 

the case of low inelasticity. Therefore, inelasticity of 

demands, explained by inelasticity parameter vi, plays a 

vital role on the final consumption load pattern. 

Figure 5: The average best set of incentives when �̂� = 0.9 

Figure 6: Electricity demand after applying DR. 

Figure 7: Operational cost after applying DR. 

 

Next, the effects of different values of monetary 

reward to aggregator �̂� and inelasticity parameter vi, on 

the benefit of all participating entities are evaluated. 

Figures 8-10 show the impact of DR program on the total 

cost of the operator, the net benefit of the aggregators, and 

the net payoff attained by the end-users respectively.  

 



 

Figure 8: Effect of �̂� on operator cost 

Figure 9: Effect of �̂� on aggregator Profit 

Figure 10: Effect of �̂� on user utility 

 

According to Figure 8, an operator’s minimum cost λ* 

is derived. It is observed that when the value of �̂� 

increases, the operational cost decreases; however, at the 

specific �̂�, the operational cost begins to increase. Thus, an 

operator needs to carefully design how the reward should 

be provided to aggregators. In Figures 9 and 10, the net 

profit of aggregators and the net payoff of the end-users is 

an increasing function of �̂� . It is easy to see that the 

aggregators only receive profit after some specific �̂� (�̂� = 

0.6). Therefore, in this analysis, all participants can see how 

the design of rewards affects the whole system.  

 

6. CONCLUSION 
 

This study presents an implementation of Particle 

Swarm Optimization (PSO) for load aggregators in smart 

electricity grid demand response system. The model of 

demand response system is based on the hierarchical 

market structure with full information proposed in the 

literature. Due to its ease of implementation and 

computational efficiency, it is shown that PSO can be used 

as an alternative efficient solution method to provide good 

solution. However, in practical, the full information may 

not be necessarily available to an operator. In such case, 

each participant must carefully design the best-suit strategic 

plan for their own benefit.   

The future research includes extending the problem 

with more practical constraints or improving the algorithm 

performances by incorporating some strategies to better 

balance exploration and exploitation ability of the search. 
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