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Abstract. When a failure cause is detected and corrected before the failure itself occurs, there will be no other 

effect except the correction cost. But, if its cause is detected after the failure actually occurs, its effects will 

become more severe depending on the duration of the uncorrected failure. This situation is not addressed 

properly by the traditional FMEA, although it is a popular technique in industries to evaluate failure risks. In 

this paper, the severity of a failure effect is modeled as a function of undetected time duration of failure. Three 

types of severity function are considered in the model; constant, linear, and quadratic. Assuming the failure 

occurrence time and its corresponding failure cause detection time to have Weibull distributions with a 

common shape parameter, the expected severity is derived for each failure cause. Based on the expected 

severity, a risk evaluation metric for each failure cause is proposed with an illustrative example. 
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1. INTRODUCTION 
 

Since the RPN(Risk Priority Number) of the FMEA 

(Failure mode and effect analysis) has several drawbacks as 

a risk metric, there have been many improvement efforts 

for better evaluation of the risk of a failure. For detailed 

discussions, see Liu et al. (2013) In most practical 

situations, a failure occurs after at least one of its causes 

has occurred. And there is a time gap between occurrences 

of a failure cause and the failure itself. The detection and 

corrective action on the failure cause may take place even 

later. Some work considers the effect of time on the failure 

risk. For example, Rhee and Ishii(2003) introduced a life 

cost-based FMEA for analyzing design alternatives of a 

particular system with Monte Carlo simulation. Kwon et al. 

(2011) proposed a time dependent expected loss model for 

a given mission period, assuming a homogeneous Poisson 

process for occurrence of failures and causes. Few studies, 

however, incorporate the effect of delayed detection and 

correction of a failure, considering the role of time in risk 

evaluation for FMEA. If a failure or its cause is left 

uncorrected for a longer time, the severity of the effect will 

become larger and the corresponding risk will also increase. 

For example, the effect of a failure incurring leakage of a 

toxicant or a radioactive substance will become more 

severe as the time elapses without fixing the failure. 

There are only a few studies considering this situation. 

Kwon et al. (2013) presented an optimal monitoring policy 

under a time dependent model with a quadratic loss 

function for the unfulfilled mission period. Jang et al.(2016) 
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suggests risk evaluation in FMEA when the failure severity 

depends on the detection time. Jang et al.(2016) proposed a 

hierarchical time delay model for risk evaluation in FMEA 

assuming exponential distributions for occurrence and 

detection times of failures and corresponding causes. 

The above works assume that the time distributions 

are exponential for simplicity. In practical situations, a 

failure is more likely to occur as the time elapses if its pre-

occurred cause is not eliminated or corrected. For example, 

consider a mechanical shaft seal of a pump. Poor 

lubrication (root cause) may cause a very high frictional 

heat on the seal face. And the alternating local heating and 

cooling of the seal face may cause small, radial, thermal 

cracks. If the pump system is operated continuously 

without fixing the poor lubrication problem, the cracks will 

grow bigger and bigger as time elapses, which eventually 

results in leakage (failure) of the pump. In this situation, an 

increasing failure rate is a more reasonable assumption than 

a constant failure rate. 

In this paper, we consider the situation where a failure 

occurs only after at least one of its causes has occurred. 

And it takes some time to detect (identify and correct) the 

cause. We assume Weibull probability law with a common 

shape parameter for occurrence and detection time 

distributions. Three types of the severity function are 

considered, i.e., constant, linear and quadratic. The model 

is constructed in section 2 and a risk evaluation metric 

(REM) is defined in section 3. An illustrative example is 

provided in Section 4 with some discussions and 

conclusion is followed in Section 5. 

 

2. THE EXPECTED SEVERITY MODEL 
 

2.1 The Time-oriented Failure Mechanism 
 

Suppose that an item is exposed to random events 

(failure causes) leading to a failure. And the failure occurs 

in time if no corrective action is taken on its pre-occurred 

cause. Then the occurrence process of failure can be 

described by the elapsed time T from the failure cause 

occurrence to the actual failure occurrence. There may also 

be a time delay D from the failure cause occurrence to its 

detection. We admit detection to include identification and 

corrective action for the failure cause. This situation is 

depicted in Fig. 1. Thus, when an item is exposed to 

random events leading to failure, a stochastic model may be 

constructed to appropriately describe the failure occurrence, 

detection and its severity. 

 

2.2 The Severity Function of a Failure  
 

The effect of a failure cause will not be so much 

severe if it is detected before the actual failure occurs. On 

the other hand, it will be very much severe if the failure 

cause is detected after the actual failure occurs. Under the 

situation of a failure incurring leakage of a toxicant or a 

radioactive substance, the result may be even disastrous if 

detection of the failure cause is delayed. Thus, we may 

reasonably assume that the severity of a failure effect is a 

function of T and D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Time-oriented Failure Mechanism 

 

 

We consider three types of severity function; constant, 

linear and quadratic. For the constant severity function, we 

assume that a constant cost or loss is incurred depending on 

failure occurrence. A constant cost will be expended to fix 

the failure cause if it is detected before the failure itself 

occurs. If it is detected after its corresponding failure 

occurs, a far bigger but constant amount of losses will be 

incurred. Thus, the constant severity function is defined as 

S = {
𝑎,               0 < 𝐷 < 𝑇
𝑎 + 𝑏,               𝑇 < 𝐷.

       (1) 

For the linear severity function, we assume the loss of the 

failure increases proportionally to the delayed time of 

identifying and fixing its cause. Thus, the linear severity 

function is defined as  

S = {
𝑎,                  0 < 𝐷 < 𝑇
𝑎 + 𝑏(𝐷 − 𝑇),           𝑇 < 𝐷.

     (2) 

For the quadratic severity function, we assume the loss of 

the failure increase as a quadratic function of the delayed 

time of identifying and fixing its cause. Thus, the quadratic 

severity function is defined as  

 

Cause 
occurs 
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Detection Detection 



S = {
𝑎,                         0 < 𝐷 < 𝑇

𝑎 + 𝑏(𝐷 − 𝑇)2,               𝑇 < 𝐷.
    (3) 

 

2.3 The Expected Severity 
 

It will be reasonable to evaluate the risk attributable to 

a failure cause based on its corresponding severity and its 

occurrence rate. The occurrence rate of a failure cause will 

be considered later and only the severity is considered here. 

Each severity function of (1), (2), and (3) is a random 

variable that depends on the failure occurrence time T and 

the failure cause detection time D. 

If the probability distributions of T and D are given, 

the expected severity can be derived. We assume T and D 

follow the Weibull probability law with the same shape 

parameter once a failure cause has occurred. The 

probability density and distribution functions of T and D 

are 

𝑓𝑇(𝑡) =  𝛽𝜆𝛽𝑡𝛽−1𝑒−(𝜆𝑡)𝛽
,      t > 0,      (4) 

𝐹𝑇(𝑡) =  1 − 𝑒−(𝜆𝑡)𝛽
,         t > 0,      (5) 

𝑓𝐷(𝑢) =  𝛽𝜇𝛽𝑢𝛽−1𝑒−(𝜇𝑢)𝛽
,    u > 0,      (6) 

𝐹𝐷(𝑢) =  1 − 𝑒−(𝜇𝑢)𝛽
,        u > 0.      (7) 

For the constant severity, its expected value can be 

easily derived as 

𝐸(𝑆) = 𝑎 + 𝑏
𝜆𝛽

𝜆𝛽+𝜇𝛽.                    (8) 

Before deriving the expected values for the linear and 

quadratic severities, we must first obtain some integration 

results. Denote the gamma function and the upper 

incomplete gamma function by 𝛤(𝑠)  and 𝛤(𝑠, 𝑥) , 

respectively, that is, 

𝛤(𝑠) = ∫ 𝑡𝑠−1𝑒−𝑡∞

0
𝑑𝑡,       (9) 

𝛤(𝑠, 𝑥) = ∫ 𝑡𝑠−1𝑒−𝑡∞

𝑥
𝑑𝑡.        (10) 

By integration by part, we get the following results: 

∫ 𝑢𝑓𝐷(𝑢)𝑑𝑢
∞

𝑡

=  ∫ 𝑢𝛽𝜇𝛽𝑢𝛽−1𝑒−(𝜇𝑢)𝛽
𝑑𝑢

∞

𝑡

 

= 𝑡𝑒−(𝜇𝑡)𝛽
+

1

𝜇𝛽
 Γ (

1

𝛽
, (𝜇𝑡)𝛽).    (11) 

∫ Γ (
1

𝛽
, (𝜇𝑡)𝛽) 𝑓𝑇(𝑡)𝑑𝑡 = Γ (

1

𝛽
) {1 − 𝜇 (

1

𝜆𝛽+𝜇𝛽)

1

𝛽
}

∞

0
. (12) 

∫ 𝑢2𝑓𝐷(𝑢)𝑑𝑢
∞

𝑡

= ∫ 𝑢2𝛽𝜇𝛽𝑢𝛽−1𝑒−(𝜇𝑢)𝛽
𝑑𝑢

∞

𝑡

 

= 𝑡2𝑒−(𝜇𝑡)𝛽
+

2

𝜇2𝛽
Γ (

2

𝛽
, (𝜇𝑡)𝛽).   (13) 

∫ 𝑡2𝑒−(𝜇𝑡)𝛽
𝑓𝑇(𝑡)𝑑𝑡

∞

0

 = ∫ 𝑡2𝑒−(𝜇𝑡)𝛽
𝛽𝜆𝛽𝑡𝛽−1𝑒−(𝜆𝑡)𝛽

𝑑𝑡
∞

0

 

= 𝜆𝛽 (
1

𝜇𝛽+𝜆𝛽)
1+

2

𝛽
Γ (1 +

2

𝛽
).   (14) 

∫ Γ (
2

𝛽
, (𝜇𝑡)𝛽)

∞

0
𝑓𝑇(𝑡)𝑑𝑡 = Γ (

2

𝛽
) {1 − 𝜇2 (

1

𝜇𝛽+𝜆𝛽)

2

𝛽
}.  (15) 

∫ 𝑡𝑓𝑇(𝑡)Γ (
1

𝛽
, (𝜇𝑡)𝛽) 𝑑𝑡

∞

0

 

= G(λ, μ, β)  − 𝜇𝛤 (
2

𝛽
) (

1

𝜇𝛽+𝜆𝛽)

2

𝛽
,        (16) 

where G(λ, μ, β) = ∫ 𝑒−(𝜆𝑡)𝛽
Γ (

1

𝛽
, (𝜇𝑡)𝛽) 𝑑𝑡

∞

0
. 

Using these results, we obtain the expected values for the linear 

and quadratic severities as 

𝐸(𝑆) = 𝑎 + 𝑏Γ (1 +
1

𝛽
) {

1

𝜇
− (

1

𝜆𝛽+𝜇𝛽)

1

𝛽
},    (17) 

𝐸(𝑆) = 𝑎 + 𝑏 {
1

𝜇2 Γ (1 +
2

𝛽
) −

2

𝜇𝛽
G(λ, μ, β)}, (18) 

respectively, See the appendices for detailed derivations of 

(17) and (18). 

 

3. RISK EVALUATION 
 

3.1 The Risk Evaluation Metric 
 

Since the FMEA is used as a prevention-oriented 

technique, the risk linked with each failure cause is 

necessary to be evaluated. We incorporate the occurrence 

rate of each failure cause with the expected severity of the 

corresponding failure into the newly defined risk metric, 

i.e., the REM (risk evaluation metric). The REM of a 

failure cause is simply defined by the mathematical product 

of its occurrence rate τ and its corresponding expected 

severity, that is, 

𝑅𝐸𝑀 =  𝜏𝐸(𝑆).                      (19) 

A failure may be incurred by several causes with 

different failure rates and each cause again usually has 

different occurrence rate. Also, it requires different time to 

detect (identify and correct) each failure cause. Thus, to 

examine the whole structure of the overall failure 

mechanism for an item, a worksheet like the FMEA sheet 

will be very useful. Table 1 shows an REM worksheet 

which is designed by modifying the traditional FMEA 



worksheet slightly to fit our purpose. Notice that Table 1 

provides an illustrative REM worksheet assuming that the 

failure mode 𝐹𝑖 has three root causes, which is not always 

the case. Also Table 1 does not provide the specific 

calculation procedure for REM. Actually, the REM 

worksheet is a summary sheet for risk evaluation of the 

overall failure causes. 

 

3.2 Distribution Parameters and Severity Type 
 

For practical use of the REM worksheet in the 

industrial field, the distribution parameters λ, β, μ  of 

failure time and failure cause detection time must be 

estimated first. If sufficient data is available, the statistical 

method such as maximum likelihood estimation may be 

used. The previous knowledge based on experience or 

expertise may also be incorporated into the statistical 

methodology using Bayesian approach. In fact, the 

traditional FMEA also assumes that some information is 

available on the occurrences and detections of failures and 

their causes. If there is no information, the number of 1~10 

cannot be assigned to occurrence and detection of each 

failure cause in the FMEA sheet. 

 

 

Table 1. REM Worksheet 

 

 

In some situations, accelerated life testing may be 

employed. In statistics or reliability engineering, there are 

many approaches to parameter estimation available, which 

we are not going deeper here. 

The type of the severity function and its cost 

parameters may be rather easier to determine. If a failure 

cause is detected before its corresponding failure occurs, 

the cost of corrective action for that cause is the only 

contribution to severity. Thus, the constant 𝑎  can be 

determined considering the correction cost for each failure 

cause. Next, the coefficient 𝑏 and the appropriate type of 

severity function can be estimated if the total amount of 

losses due to each failure can be calculated at two time 

points. Suppose that a failure is detected immediately upon 

its occurrence and the fire fight action against this failure 

and corrective action for eliminating its root cause are 

taken without any delay. The total amount of losses in this 

situation will determine the coefficient 𝑏. Next, the total 

amount of losses is estimated for the case where there is a 

time delay between the failure occurrence and its detection 

and corrective actions taken. The type of severity function 

can be determined by comparing the one with the other. 

Finally, the occurrence rate τ of each failure cause is 

determined considering the total number of occurrences 

during the system life time. For example, if the system with 

the targeted item is expected to operate for 10 years, then τ 

is the expected number of occurrences of each failure cause 

for 10 years. 

 

4. AN ILLUSTRATIVE EXAMPLE  
 

4.1 An Example 
 

Consider a mechanical shaft seal for pumps with 

rotating shafts. A pump with a through-shaft is very 

difficult to be completely sealed. And it is a challenge to 

the entire pump industry to minimize leakage. According to 

the technical documents of Grudfos(2009), 39% of the 

pump system failure is attributable to the shaft seal failure. 

With countless variants of shaft seals, its most basic form 

combines a rotating part with a stationary part. When 

properly designed and installed, the rotating parts rides on a 

lubricating film of only 0.00025mm in thickness. If this 

film becomes too thick, the pumped medium will leak. On 

the other hand, if it becomes too thin, the friction loss 

increases and the contact surface overheat, triggering seal 

failure. 

Typical failure modes for mechanical shaft seals 

include lubrication failure, contamination failure, degrading 

and wear, installation failure, and system failure. Only the 

lubrication failure is examined here. It has four possible 

causes; dry running, exposure to excessive pressure / 

Failure Effect Cause REM 

Failure 

mode 

Failure Time 
Severity 

coefficient 
Root 

Causes 

Detection 

Time 
Occurrence 

rate (τ) 

Constant 

severity 

Linear 

severity 

Quadratic 

severity 
λ β 𝑎 𝑏 μ β 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

Fi  

λi1 𝛽𝑖1 αi1 𝑏i Ci1  μi1 𝛽𝑖1 τi1 REMi1  REMi1  REMi1  

λi2 𝛽𝑖2 αi2 𝑏i Ci2  μi2 𝛽𝑖2 τi2 REMi2  REMi2  REMi2  

λi3 𝛽𝑖3 αi3 𝑏i Ci3  μi3 𝛽𝑖3 τi3 REMi3  REMi3  REMi3  

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 



temperature, too low viscosity, and excessive heat 

dissipation.  

Given  𝜆, 𝛽, 𝑎, 𝑏, 𝜇,  and τ , Table 2 provides the 

numerical values of REM for each failure cause. The 

numerical figures of 𝜆, 𝛽, 𝑎, 𝑏, 𝜇, and τ are given only for 

illustration purpose and not based on real data. And the 

quadratic severity function is assumed to be appropriate. In 

this example, the risk attributable to the cause “Heat 

dissipation” is the most significant.  
 

4.2 Effect of Improvement 
 

If improvement actions are taken to reduce the risk, 

the distribution parameters 𝜆, 𝛽, 𝜇, and τ will be affected. 

To get some insights on the most effective improvement 

action, the REM values are compared for two different 

values of each 𝜆, 𝛽, 𝜇, and τ in Table 3. Note that all the 

other parameters remain fixed when the effect of 

improvement of one parameter is analyzed. The level of 

improvement is assumed to be twice as compared with its 

original value. And the set of the parameters with the 

largest REM is taken as the baseline for comparison. 

Table 3 shows that the shape parameter 𝛽 has the 

most significant effect on REM. But it may be closely 

related with the failure mechanism which may be very 

difficult to improve. The scale parameter 𝜇 of detection 

time has the next significant effect on REM which may be 

relatively easy to improve. The scale parameter 𝜆  of 

failure time has the third significant effect on REM. By 

improving the reliability of the item, 𝜆 can be reduced. 

Compared with other parameters, the last parameter τ has 

a smaller effect on REM. 

 

 

Table 2. REM Worksheet for the Illustrative Example 

 

 

To take improvement action, the effectiveness as well 

as expenses should be considered. Keeping the 

improvement cost in mind, the most effective action will be 

preferred. Table 3 gives some insights on improvement 

direction. 

 

Table 3. Effect of Improvement Actions 

Parameter 
Value Improved 

REM 

Difference 

from 1500 original changed 

λ 0.02 0.01 350 1150 

β 1.2 2.4 39 1461 

μ 0.1 0.2 100 1400 

τ 2 1 750 750 

 
 
5. CONCLUSION 

 

Under many practical situations in the industrial field, 

the effect of a system failure becomes more severe if its 

undetected time or delayed time of corrective action is 

longer. The proposed model tries to take this practical 

situation into account. But it still has several limitations to 

describe the real situations appropriately. 

First, the assumption for the detection time of a failure 

cause is not so much realistic. It is assumed to have a 

Weibull distribution with the same shape parameter as the 

failure time. This is to get a simple solution but not to be 

likely in the real situation. Moreover, the detection time 

distribution may change into a totally different context after 

a failure actually occurs. Besides, a failure cause is usually 

detected by periodic inspection or monitoring of the system. 

So the detection time may not be a continuous random 

variable. 

Second, the expected severity of a failure cause 

reflects the total losses and corrective cost under the 

condition that it has already occurred. Thus, to get a right 

metric of risk evaluation, the probability of the failure 

cause occurrence may be better to be multiplied to the 

expected severity. The occurrence rate instead is used in the 

proposed model, because the probability cannot be 

Failure Effect Cause REM 

Failure 

mode 

Failure Time 
Severity 

coefficient 
Root 

Causes 

Detection Time Occurrence 

rate (τ) 

Quadratic 

severity 
λ β 𝑎 𝑏 μ β 

Lubrication 

Failure 

0.1 3 20 100 Dry running 0.5 3 5 102 

0.05 2 10 100 Excessive pressure 0.25 2 3 93 

0.04 1.5 15 50 Low viscosity 0.2 1.5 2 163 

0.02 1.2 15 50 Heat dissipation 0.1 1.2 2 1500 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 



determined if the time duration is not specified. The 

occurrence rate of a failure cause can also be different as to 

the length of baseline time duration. For example, if the 

occurrence rate 1 is applied when one year’s duration is 

assumed as the baseline duration, it will be 10 when 10 

year’s duration is the base. It is not so easy to determine 

which duration is appropriate for the baseline even in this 

simple case. 

There may be several other drawbacks that should be 

addressed. At its infant stage of study on time-linked risk 

evaluation, future works are expected for further refinement 

or expansion, reflecting diverse industrial situations.  

 

APPENDIX A. Derivation of (17) 

Using the equations (11) and (12), we obtain Formula (17) 

as follows: 

𝐸(𝑆) = 𝑎 + 𝑏 ∫ ∫ (𝑢 − 𝑡)𝑓𝐷(𝑢)𝑓𝑇(𝑡)𝑑𝑢𝑑𝑡
∞

𝑡

∞

0

 

= 𝑎 + 𝑏 ∫ 𝑓𝑇(𝑡) {∫ 𝑢𝑓𝐷(𝑢)𝑑𝑢
∞

𝑡

} 𝑑𝑡
∞

0

−  ∫ 𝑡𝑓𝑇(𝑡) {∫ 𝑓𝐷(𝑢)𝑑𝑢
∞

𝑡

} 𝑑𝑡
∞

0

 

= 𝑎 + 𝑏 [∫ 𝑓𝑇(𝑡) {𝑡𝑒−(𝜇𝑡)𝛽
+

1

𝜇𝛽
𝛤 (

1

𝛽
, (𝜇𝑡)𝛽)} 𝑑𝑡

∞

0

− ∫ 𝑡𝑓𝑇(𝑡)𝑒−(𝜇𝑡)𝛽
𝑑𝑡

∞

0

] 

= 𝑎 +
𝑏

𝜇𝛽
∫ 𝛤 (

1

𝛽
, (𝜇𝑡)𝛽) 𝑓𝑇(𝑡)𝑑𝑡

∞

0

 

= 𝑎 +
𝑏

𝜇𝛽
𝛤 (

1

𝛽
) {1 − 𝜇 (

1

𝜆𝛽 + 𝜇𝛽
)

1
𝛽

} 

= 𝑎 + 𝑏𝛤 (1 +
1

𝛽
) {

1

𝜇
− (

1

𝜆𝛽 + 𝜇𝛽
)

1
𝛽

} . 

 

APPENDIX B. Derivation of (18) 

Using the equations (11), (13), (14), (15) and (16), we 

obtain Formula (10) as follows: 

𝐸(𝑆) = 𝑎 + 𝑏 ∫ ∫ (𝑢 − 𝑡)2𝑓𝐷(𝑢)𝑓𝑇(𝑡)𝑑𝑢𝑑𝑡
∞

𝑡

∞

0

 

= 𝑎 + 𝑏 {∫ 𝑓𝑇(𝑡) [∫ 𝑢2𝑓𝐷(𝑢)𝑑𝑢
∞

𝑡

] 𝑑𝑡
∞

0

− 2 ∫ 𝑡𝑓𝑇(𝑡) [∫ 𝑢𝑓𝐷(𝑢)𝑑𝑢
∞

𝑡

] 𝑑𝑡
∞

0

+ ∫ 𝑡2𝑓𝑇(𝑡) [∫ 𝑓𝐷(𝑢)𝑑𝑢
∞

𝑡

] 𝑑𝑡
∞

0

} 

= 𝑎 + 𝑏{𝐴 − 2𝐵 + 𝐶} 

= 𝑎 + 𝑏 [𝛤 (1 +
2

𝛽
) {

1

𝜇2
− (

𝜇𝛽

𝜇𝛽 + 𝜆𝛽
) (

1

𝜇𝛽 + 𝜆𝛽
)

2
𝛽

}

− 2 {(
𝜆𝛽

𝜆𝛽 + 𝜇𝛽
) (

1

𝜆𝛽 + 𝜇𝛽
)

2
𝛽

𝛤 (1 +
2

𝛽
)

+  
1

𝜇𝛽
∫ 𝑒−(𝜆𝑡)𝛽

𝛤 (
1

𝛽
, (𝜇𝑡)𝛽) 𝑑𝑡

∞

0

−
1

𝛽
(

1

𝜆𝛽 + 𝜇𝛽
)

2
𝛽

𝛤 (
2

𝛽
)}

+ (
𝜆𝛽

𝜆𝛽 + 𝜇𝛽
) (

1

𝜆𝛽 + 𝜇𝛽
)

2
𝛽

𝛤 (1 +
2

𝛽
)] 

= 𝑎 + 𝑏 {
1

𝜇2
𝛤 (1 +

2

𝛽
) −

2

𝜇𝛽
∫ 𝑒−(𝜆𝑡)𝛽

𝛤 (
1

𝛽
, (𝜇𝑡)𝛽) 𝑑𝑡

∞

0

} 

= 𝑎 + 𝑏 {
1

𝜇2
𝛤 (1 +

2

𝛽
) −

2

𝜇𝛽
𝐺(𝜆, 𝜇, 𝛽)} 

where 

𝐴 = ∫ 𝑓𝑇(𝑡) [∫ 𝑢2𝑓𝐷(𝑢)𝑑𝑢
∞

𝑡

] 𝑑𝑡
∞

0

= ∫ 𝑓𝑇(𝑡) [𝑡2𝑒−(𝜇𝑡)𝛽
∞

0

+
2

𝜇2𝛽
Γ (

2

𝛽
, (𝜇𝑡)𝛽)] 𝑑𝑡 



= ∫ 𝑡2𝑒−(𝜇𝑡)𝛽
𝑓𝑇(𝑡)𝑑𝑡 +

2

𝜇2𝛽
∫ Γ (

2

𝛽
, (𝜇𝑡)𝛽)

∞

0

𝑓𝑇(𝑡)𝑑𝑡
∞

0

 

= 𝜆𝛽 (
1

𝜇𝛽 + 𝜆𝛽
)

1+
2
𝛽

Γ (1 +
2

𝛽
)

+
2

𝜇2𝛽
Γ (

2

𝛽
) {1 − 𝜇2 (

1

𝜇𝛽 + 𝜆𝛽
)

2
𝛽

} 

= Γ (1 +
2

𝛽
) {𝜆𝛽 (

1

𝜇𝛽 + 𝜆𝛽
)

1+
2
𝛽

+
1

𝜇2
− (

1

𝜇𝛽 + 𝜆𝛽
)

2
𝛽

} 

= Γ (1 +
2

𝛽
) {

1

𝜇2
− (

𝜇𝛽

𝜇𝛽 + 𝜆𝛽
) (

1

𝜇𝛽 + 𝜆𝛽
)

2
𝛽

}, 

𝐵 = ∫ 𝑡𝑓𝑇(𝑡) [∫ 𝑢𝑓𝐷(𝑢)𝑑𝑢
∞

𝑡

] 𝑑𝑡
∞

0

 

= ∫ 𝑡𝑓𝑇(𝑡) [𝑡𝑒−(𝜇𝑡)𝛽
+

1

𝜇𝛽
 Γ (

1

𝛽
, (𝜇𝑡)𝛽)] 𝑑𝑡

∞

0

 

= ∫ 𝑡2𝑒−(𝜇𝑡)𝛽
𝑓𝑇(𝑡)𝑑𝑡

∞

0

+
1

𝜇𝛽
∫ 𝑡𝑓𝑇(𝑡)Γ (

1

𝛽
, (𝜇𝑡)𝛽) 𝑑𝑡

∞

0

 

= (
𝜆𝛽

𝜆𝛽 + 𝜇𝛽
) (

1

𝜆𝛽 + 𝜇𝛽
)

2
𝛽

Γ (1 +
2

𝛽
)

+  
1

𝜇𝛽
∫ 𝑒−(𝜆𝑡)𝛽

Γ (
1

𝛽
, (𝜇𝑡)𝛽) 𝑑𝑡

∞

0

−
1

𝛽
(

1

𝜆𝛽 + 𝜇𝛽
)

2
𝛽

Γ (
2

𝛽
) 

= (
𝜆𝛽

𝜆𝛽 + 𝜇𝛽
) (

1

𝜆𝛽 + 𝜇𝛽
)

2
𝛽

Γ (1 +
2

𝛽
) + 

1

𝜇𝛽
𝐺(𝜆, 𝜇, 𝛽)

−
1

𝛽
(

1

𝜆𝛽 + 𝜇𝛽
)

2
𝛽

Γ (
2

𝛽
), 

and 

𝐶 = ∫ 𝑡2𝑓𝑇(𝑡) [∫ 𝑓𝐷(𝑢)𝑑𝑢
∞

𝑡

] 𝑑𝑡
∞

0

=  ∫ 𝑡2𝑓𝑇(𝑡)𝑒−(𝜇𝑡)𝛽
𝑑𝑡

∞

0

 

=  ∫ 𝑡2𝛽𝜆𝛽𝑡𝛽−1𝑒−(𝜆𝑡)𝛽
𝑒−(𝜇𝑡)𝛽

𝑑𝑡
∞

0

 

= 𝜆𝛽 (
1

𝜆𝛽 + 𝜇𝛽
)

1+
2
𝛽

∫ 𝑦
2
𝛽𝑒−𝑦𝑑𝑦

∞

0

 

= 𝜆𝛽 (
1

𝜆𝛽 + 𝜇𝛽
)

1+
2
𝛽

Γ (1 +
2

𝛽
) 

= (
𝜆𝛽

𝜆𝛽 + 𝜇𝛽
) (

1

𝜆𝛽 + 𝜇𝛽
)

2
𝛽

Γ (1 +
2

𝛽
). 
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