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Abstract. Quality of items produced at a manufacturing process isn ’t necessarily  uniform. Quality  

characteristics of respective items have stochastic variab ility. Control charts are basic tools to detect a change 

in process condition using the quality data with the stochastic variability. The x  and s  control charts are 

famous tools to monitor process mean and variance based on the fluctuations on the respective charts. In 

particular, the s  control chart is operated prior to the x  control chart because a change of process 

variance affects the decision about a change of process  mean  based on the x  control chart. On one hand, 

when an assignable change in the process condition was detected by a control chart, it is required to identify a 

time point of process change and search for assignable causes. Hence, some methods of estimat ing the time 

point of a change in process variance have been developed. Then, it is supposed in some previous researches 

that the process has just a single change point. However, the process may have multip le change points until a  

chart signals. In this study, we propose a method of identifying the respective time points of mult iple changes 

and tracing state transition on time series of process variances. Then, we show the validity of our proposal in 

comparison to some traditional methods. 
 

Keywords: Akaike informat ion criterion (AIC), change point detection, dynamic p rogramming, maximum 

likelihood theory, s  control chart  

 

 

1. INTRODUCTION 
 

Control charts play an important role in statistical 

process control (Montgomery, 2005). Control charts are 

used to distinguish whether the fluctuation of quality 

characteristics depends on chance or assignable causes. 

When a control chart signals that an assignable cause is 

present, process engineers must init iate a search for the 

assignable cause of the process disturbance. It is well 

known that a certain amount of time is needed until the 

Shewhart x  control chart signals a change in a process 

mean after the change in the process mean actually 

occurred.  Therefore, the process engineers should 

identify when the process  has changed into an out-of-

control condition first. Consequently, by identifying the 

point of change in the process condition, the search for the 

assignable cause can be simplified and then appropriate 

actions needed to improve quality can be implemented 

sooner (Samuel et al. 1998a). 

In the statistical literature, there is a research area 

called change point detection (CPD) (Qui, 2014). A li et al. 

(1997) have considered a method for estimating a change 

point in a process mean under the assumption that a process 

mean is changed once until a chart signals. Under same 

assumption, Samuel et al. (1998a) and Pignatiello and 

Samuel (2001) have proposed a CPD method for a single 

change point in a process mean using the maximum 

likelihood theory. Further, Hawkins (2001) has considered 

a multip le change-points model under the situation that a 

process mean is changed multiple times until a chart signals. 

Also, Perry and Pignatiello (2006) have considered a CPD 

method of a process mean under the assumption that a 

process mean is changed along a linear trend after a process 

changed to an out-of-control condition. Then, Takemoto 
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and Arizono (2009) have considered a CPD method under 

the situation that a process mean is changed continuously 

after a process changed to an out-of-control condition. Also, 

Noorossana and Shadman (2009) have investigated a CPD 

method in a process mean with a monotonic change. In a 

monotonic change, the type of change is unknown a priori, 

but the direction of shifts is the same, increasing or 

decreasing (Amiri and Allahyari, 2012). The researches 

described above are investigated based on the maximum 

likelihood theory. An overview of CPD literature shows 

that a maximum likelihood estimator (MLE) is one of the 

prominent approaches for CPD (Amiri and Allahyari, 2012). 

In recent years, some CPD methods have been proposed 

using some techniques in soft computing and machine 

learning (Ghiasabadi et al., 2013; Kazemi et al., 2016). 

On the other hand, Samuel et al. (1998b) have 

considered a CPD method in process variance using the 

maximum likelihood theory under the assumption that 

process variance is changed once until a  chart signals. Then, 

Noorossana and Heydari (2009) have assumed that process 

variance is changed along a linear trend after a process 

changed to an out-of-control condition. Further, 

Noorossana and Heydari (2012) have considered a CPD 

method with a monotonic change of process variance.  

Further, Amiri, Niaki, and Moghadam (2015) have 

proposed a probabilistic neural network (PNN)-based 

procedure to estimate a change point in process variance. 

In common, it has been insisted that the x  and s 

control charts are used together. One of the reasons is that a 

change of process variance affects the decision about a 

change of a process mean based on the x  control chart. 

By contraries, a  change of a process mean doesn’t affect the 

decision about a change of process  variance based on the s 

control chart. Therefore, the inference of change points in 

process variance should be considered separately from a 

change of a process mean. However, Samuel et al. (1998b), 

Noorossana and Heydari (2009, 2012), and Amiri, Niaki, 

and Moghadam (2015) have assumed that a process mean 

always maintains an in -control condition. Hence, an 

estimator o f process variance has been given as a departure 

from an ideal process mean in the in-control condition. This 

estimator is different from plotted statistics in the s control 

chart, that is, a common unbiased estimator of process 

variance. 

Also, Samuel et al. (1998b), Noorossana and Heydari 

(2009, 2012), and Amiri, Niaki, and Moghadam (2015) 

have assumed the single change-point model for estimating 

a change point in process variance. In this case, the process 

keeps being in a particular out-of-control condition until the 

chart signals after the process shifted to an out-of-control 

condition. However, it shall be common that a process 

condition is getting worse as time progresses. Therefore, 

Noorossana and Heydari (2009, 2012) have investigated a 

linear trend change and a monotonic change model in 

process variance. However, their studies have assumed 

some specified pattern of change in process variance. On 

one hand, Hawkins (2001) has considered a multiple 

change-points model in a process mean. Then, a multiple 

change-points model in  process variance is worth 

investigating. 

On the other hand, on considering a mult iple change-

points model, it is sometimes assumed that the number of 

change points is known (Qiu, 2014). Alternatively, there are 

some studies in which the number of change points is 

treated as one of unknown parameters that should be 

estimated. For example, Lav ielle and Moulines (2000), and 

Lebarbier (2005) have applied the least square method and 

its related method to estimation of an unknown number of 

shifts in a time series. 

In this paper, we consider a multiple change-points 

model with respect to a change of process variance. Then, a 

new CPD method is proposed. Also, in the t raditional 

literature, the stochastic properties in  the observations 

before and after the change point are specified  in  the 

statistical model. Hence, the probability density function of 

the observations has been utilized on constructing a log-

likelihood function in a statistical model. On  one hand, in 

this study, we don’t assume that a process mean always 

maintains the in-control condition. In this case, we utilized 

the unbiased estimator of process variance associated with 

a charting statistic in the s control chart. Therefore, the 

stochastic property in  the unbiased estimator of process 

variance before and after the change point is specified in 

the statistical model. The unbiased estimator of process 

variance is independent of a process mean  and obeys a chi-

square distribution. Hence, the probability density function 

of the chi-square distribution is utilized on constructing a 

log-likelihood function in the statistical model. Further, we 

apply Akaike Information Criterion (AIC) to determination 

of the number of change points because AIC is closely 

connected with the maximum likelihood theory. Then, the 

usefulness of our proposal is shown in comparison to some 

traditional methods through a numerical example.  

 

 

2. TRADITIONAL RESEARCHES 
 

 In this section, we introduce the following tradit ional 

researches about CPD for process variance: Sumuel et al. 

(1998b) and Noorossana and Heydari (2009). We first show 

some assumptions and notations. The respective quality 

characteristics of jth item 1, ,j n  in ith sampling, 

, 1, , ,ijx j n  are normally distributed, where n  is the 

number of samples in every sampling. Then, denote the 

normal d istribution with mean    and variance 
2  by 

2( , )N   . Further, the probability density function of the 



normal distribution 2( , )N    is defined as 2( ; , )Nf x   . 

The respective quality characteristics of items 
ijx  are also 

independently and identically distributed in every sampling. 

The following ith statistic with respect to the process 

variance is plotted on the s control chart: 
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Then, control limits on the s control chart are defined 

according to a basic discipline (Montgomery, 2005). 

   

2.1 Research in Samuel et al. (1998b) 
 

Samuel et al. (1998b) have assumed that the process 

variance is changed once until the chart signals. This is 

called a single change-point model. In the detail, denote the 

in-control and out-of-control condition by 2

0 0( , )N    and 
2

0 1( , )N   , respectively. Note that the process mean isn’t 

changed in their model. Then, the following statistical 

model is considered: 
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where   and T express the last point of the in-control 

condition and the signal point on the control chart. For this 

statistical model, a log-likelihood function is given as 

follows: 
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For a given  , Samuel et  al. have the following maximum 

log-likelihood estimator (MLE) 2

1̂  for 2

1  by 

differentiating 2

1( )   with respect to 2

1 : 
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By inserting 2

1̂  in eq.(5) into 2

1( )   in eq.(4), Samuel 

et al. obtain the following maximum log-likelihood 
2

1
ˆ( )   for a given  : 
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Further, the maximum log-likelihood 2

1
ˆ( )   is 

maximized in   for the purpose of obtaining the 

estimator of  . The estimator ̂  is obtained as follows: 

 
2

1
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2.2 Research in Noorossana and Heydari (2009) 
 

 Noorossana and Heydari (2009) have assumed that the 

process variance is changed along a linear t rend after the 

process changed to an out-of-control condition. This is 

called a linear trend change model. In the detail, the 

following statistical model is considered: 
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where 

 2 2
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  is a magnitude of changes in unit time. Note that the 

process mean isn’t also changed in their model. For this 

statistical model, a log-likelihood function is given as 

follows: 
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For a given  , we have the fo llowing equation about the 

MLE ̂  for   by differentiat ing ( )   with respect to 

 : 
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As shown in eq.(11), it is impossible to obtain the MLE of 

  which satisfies ( ) 0d d     as an exp licit function. 

Noorossana and Heydari (2009) have proposed a numerical 



search for   which  satisfies ( ) 0d d    . In their 

proposal, the MLE of  , ̂ , is obtained from the 

following iterative calculations: 
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This procedure is based on Newton’s method. Then, they 

obtain the maximum log-likelihood ˆ( )   for a given   

by inserting ̂  derived from eq.(12) into ( )   in 

eq.(10). Further, the maximum log-likelihood ˆ( )   is 

maximized in   for the purpose of obtaining the 

estimator of  . The estimator ̂  is obtained as follows: 

 ˆˆ arg max ( ).


          (13) 

 

 

3. PROPOSED METHOD 
 

In this study, we propose a method of detecting change 

points under the following situations: 

(i) The process mean does not always maintain the in-

control condition until the chart signals . 

(ii) The process variance is changed mult iple times until 

the chart signals, that is, mult iple  change-points model. 

As described in the previous section, the traditional 

researches have assumed that the process mean isn’t 

changed in their model. Hence, the log-likelihood function 

is formed using the probability density function of the 

normal d istribution. When the observations 

, 1, , ,ijx j n  are given as the normal distribution 
2( , )N   , the statistic 2 2( 1) in s   obeys the chi-square 

distribution with 1n  degree of freedom. From this fact, 

the distribution of 2

is  has the following probability density 

function: 
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Then, the following statistical model is considered since the 

process variance is changed multip le times until the chart 

signals: 
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where K  indicates the number of changes in the process 

variance until the chart  signals. Also, ( )

0 1( , , )K

K     

and 2( ) 2 2 2

1 2( , , , )K

K     express change points and 

process variances in some out-of-control condition after 
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K    , and 
2( ) 2 2

1 2( , , ,K    2 )K are unknown and those should 

be estimated from the observations. 

For the statistical model in eq.(15), a log-likelihood 

function is given as follows: 
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where 1 0  . 

 For a given 
( )K , we have the fo llowing equation 

about the MLEs 2( ) 2 2 2

1 2
ˆ ˆ ˆ ˆ( , , , )K

K     for 
2( ) 2 2 2

1 2( , , , )K

K     by differentiat ing ( )

2( )( )K

K


  

partially with respect to 2 2 2

1 2, , , K   : 

2 2

11 1

1
ˆ .

k

k i

ik k k

s





    




        (17) 

Further, by inserting 2ˆ
k  in eq.(17) into ( )
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eq.(16), we obtain the following maximum log-likelihood 
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where C is a constant. 

The maximum log-likelihood ( )

2( )ˆ( )K

K


  is 

maximized in ( )K  for the purpose of obtaining the 

estimator o f ( )K . The estimator ( )ˆ K  for ( )K  is given 

as follows: 
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However, it is not easy to solve eq.(19) directly. We define 
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( )K KD   is equivalent to the maximization of ( )
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in ( )K . Then, ( )K KD   is transformed into the following 

relationship: 
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   
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 
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



 

   
     

  


 



  

 (21) 

The min imization problem for ( )K KD   is fo rmulated and 

solved based on the dynamic programming in eq.(21). By 

solving the min imization problem for ( )K KD  , ( )K

which maximizes the maximum log-likelihood ( )

2( )ˆ( )K

K


  

is obtained. 

 Finally, the statistical models for any K are compared. 

Note that the number of unknown (estimated) parameters is 

different in the respective statistical models. We accept AIC 

in order that the most appropriate statistical model among 

the statistical models for any K is selected. In the detail, 

AIC in the statistical model for K is given as follows: 

 
2( )

( )ˆ
ˆAIC( ) 2 ( ) 2 ,K

K KK B


       (22) 

where KB  means a bias and is given as the number of 

unknown parameters . In  this study, unknown and estimated 

parameters are 
2( )K  and 

( )K . Hence, the b ias is given 

as follows: 

2 , 2 ,

, .
K

K if K T
B

T otherwise


 


      (23) 

As the result, the most appropriate statistical model is 

obtained as follows: 

 ˆ arg min AIC( ).
K

K K       (24) 

The most appropriate K is obtained from eq.(24), and then, 
( )ˆ K  and 

2( )ˆ K  are g iven as eqs.(19) and (17),  

respectively. 

 
 
4. NUMERICAL EXAMPLES  

 

In this section, we show some numerical examples. In 

this case, we compare our proposal with the methods in the 

traditional researches exp lained in this paper, that is, 

Samuel et al. (1998b) and Noorossana and Heydari (2009).  

A numerical example is shown using a series of 

statistics 
is  in Figure 1. The model parameters are as 

follows: 2 2

0 010, 100.0, 1.50n     . Then, a series of 

statistics 
is  in Figure 1 are obtained by computer 

simulation under the condition that 2,K 
2 2 2 2

0 1 1 215, 25, 2.00 , 2.50       . Note that the 

condition of the process changes twice and the process 

mean  maintains the in-control condition. Further, the 

parallel lines in Figure 1 express control limits. Hence, this 

s chart signals at 32th sampling. 

Figures 2, 3, and 4 indicate outputs obtained by 
applying the methods in Samuel et al. (1998b), Noorossana 

and Heydari (2009), and our proposal. Note that the 

changes in process variance illustrate the lines going 

through any plotted points in the respective charts. The 

detail of outputs is explained as below. 

From Figure 2, the method of Samuel et al. (1998b) 

has reported that the change point is estimated at ˆ 27   

and the process variance after the process change is 

estimated at 2 2

1
ˆ 2.72  . As long as we see Figure 2, the 

estimators of   and 2

1  are not thought to be 

appropriate. We think that this is the reason why the single 

change point in the statistical model is considered, and then 

the estimator 2

1̂  in Eq.(5) is given as the departure from 

the ideal process mean 0 . 
From Figure 3, the method of Noorossana and 

Heydari (2009) has reported that the change point is 

estimated at ˆ 17   and the magnitude of changes in the 

process variance after the process changed is estimated at 
ˆ 0.289   per unit t ime. As long as we see Figure 3, the 

change in the process variance after the process changed is 

not grasped very well. Th is will be the reason why the kind 

of changes after the change point is specified as a linear 

trend, and then the departure from the ideal process mean 

0  is also considered on estimating   associated with the 

process variance in this method.  
Further, our proposal is confirmed through Figure 4.  

Our p roposal has reported that the number of p rocess 

changes is ˆ 2K  , the change po ints are est imated at   



 

Figure 1: a series of statistics 
is  for numerical example 

 

 

Figure 2: output by the method of Samuel et al. (1998b) 

 

 

Figure 3: output by the method of Noorossana and Heydari       

(2009) 

 

0 1
ˆ ˆ13, 28   , and the process variance after the process 

changed is estimated at 
2 2 2 2

1 2
ˆ ˆ1.81 , 2.52   . As long 

as we see Figure 4, the transition in the process variance 

after the process changed is grasped very well.  Also, a  

slight change immediately after the departure from the in-

control condition is grasped very well. In the case that our 

method is operated at real time with charting observations, 

the change of process variance may be detected before the 

signal of a chart.   

 

Figure 4: output by our proposal 

 

 As noted above, the process variance is assumed to be 

changed twice in a series of statistics 
is  for the numerical 

example. Hence, our proposal will be functioning well in 

the numerical example. On contrary, the method of Samuel 

et al. (1998b) or Noorossana and Heydari (2009) may be 

functioning well when the process variance is assumed to 

be changed according to a single change-point model o r a 

linear trend model. It is simply that the respective situations 

are suitable for each method. However, it has been found 

through the above simulation that the method of Samuel et 

al. (1998b) o r Noorossana and Heydari (2009) cannot be 

functioning well in the case that the situation that the 

situation of the observations is not suitable for respective 

methods. On one hand, our proposal has the possibility of  

covering extensive conditions as a mult iple change-points 

model in the change of process variance in comparison 

with the methods in Samuel et al. (1998b) and Noorossana 

and Heydari (2009). Therefore, our proposal will be 

effective in practical usage.   

 

 

5. CONCLUDING REMARKS  
 

 In this paper, we have considered a multiple change-

points model with respect to a change of process variance. 

In the traditional researches, it has been assumed that a 

process mean always maintain the in-control condition until 

a chart signals. The estimation o f a  change point in process 

variance should be considered separately from a change of 

a process mean. Then, this paper has the assumption that 

the process mean does not always maintain the in-control 

condition until a chart  signals . For the purpose of 

considering the assumption, the statistical model and 

likelihood function are constructed using the chi-square 

distribution expressing the probability distribution of 

unbiased estimator of p rocess variance. Then, we have 

formulated the dynamic programming in order to maximize 

the maximum log-likelihood in multiple change points . 

Further, a theoretical method for estimating the number of 
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change points has been proposed using AIC. Lastly, the 

usefulness of our proposal has been shown through a 

numerical example.  

 In this paper, we have shown how to practice our 

proposed method when the chart signals. On one hand, our 

proposed method can be applied at any t ime. That is, it is 

possible to practice our proposed method with charting 

observations together at real time. In this case, it is possible 

to trace the state transition on time series of process 

variances by using our method. In this case, it is noted that 

application software to practice our method at real time 

needs to be developed. This will be a future work.  
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