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Abstract. This paper investigates the selection scheme on replacement policies for repairable two-component systems.
Two components can be connected in series or parallel. Due to the inevitable deterioration of the components, each
component may fail more frequently as its age or usage increases. Therefore, an appropriate preventive replacement may
be suitable for reducing the number of failures and maintains the operation of the component normally. When the age of
component reaches a pre-specified time, it is replaced with a replacement cost, a downtime cost, and a setup cost. Any
failure before replacement is rectified by minimal repair and it incurs a minimal repair cost and a downtime cost. In
particular, when the downtime cost or setup cost is high, it might be worthwhile replacing both components at the same
time (called group replacement policy; GRP) instead of replacing them separately (called individual replacement policy;
IRP). In this paper, the selection schemes for IRP and GRP of series and parallel systems are proposed in order to minimize
the long-run expected cost per unit time. Finally, the IRP and GRP of series and parallel systems are compared through

numerical examples.

Keywords: minimal repair, replacement policy, series system, parallel system

1. INTRODUCTION

With the advance of science and technology,
manufacturing processes of products become more and more
complex. In general, any manufacturing system may involve
multiple subsystems (or components) to complete a
manufacturing process. To ensure the manufacturing process
runs smoothly, a suitable maintenance strategy for subsystems
(or components) should be planned and performed.

Over the past few decades, there are many research
papers on the minimal repair and replacement policies for a
single component. Barlow and Hunter (1960) first introduce

the minimal repair concept into the reliability field and
further, it is widely adopted. Phelps (1983) considered the
replacement problem under minimal repair and showed that a
particular form of control limit policy is optimal in the space
of all possible policies. In 1983, Nakagawa and Kowada
defined a minimal repair in the term of the failure rate and
devices some probability quantities and reliability properties.
Sheu (1991) proposed a generalization of the block
replacement policy and analyzed for a multi-unit system
which has the specific multivariate distribution. Chien and
Sheu (2006) developed an extended optimal age-replace ment
policy. They considered an operating system suffers a shock
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and fails at a certain age, it is either replaced by a new system
or it undergoes minimal repair. Li and Peng (2014)
investigated a type of dynamic behavior in the multi-state
series-parallel system and used the Markov reward model to
calculate the systemavailability and the operation cost.

For replacement policies, Osaki and Nakagawa (1975)
established the age-replacement cost model and further
derived an optimal replacement policy such that the total
maintenance cost is minimized. Berg and Epstein (1978) gave
arule for choosing the least costly of the above three policies
under conditions specified. The implementation of this rule is
illustrated for two special cases, where the distribution of
item life-time is uniform, or 2-stage Erlang. Beichelt (1981)
introduced a generalized block replacement policy and gave
the long-run cost rate. Furthermore, integral equations of the
renewal type for the basic reliability expressions are derived
and a numerical example is presented. Sheu et al. (2010)
considered a periodic replacement model with minimal repair
based on cumulative repair-cost limit and then the minimum-
cost replacement policy is studied by showing its existence,
uniqueness, and structural properties.

In repair-rep lacement policy aspect, Elwany et al. (2011)
considers a replacement problem for components whose
degradation process can be monitored using dedicated
sensors. Hsu et al. (2015) proposed the impact of the
downtime cost on the replacement policies for a two-
component series system. They considered the case when
minimal repairs are carried out at failures and the component
should be replaced at a certain age. However, most of the
work did not consider the case when the components are cost-
dependentin performing the maintenance actions.

In this paper, the individual and group replacement cost
models of a two-component series or parallel systems are
constructed and the optimal individual replacement policy
(IRP) and group replacement policy (GRP) are derived. In
addition, the selection scheme on IRP and GRP for series and
parallel systems is proposed and the comparisons of IRP and
GRP for series and parallel systems are illustrated through
numerical examples.

This paper is organized as follows. The mathematical
models are constructed in Section 2. In Section 3, the optimal
IRP and GRP are derived and the select scheme on IRP and
GRP for series and parallel systems is proposed. The
comparisons of IRP and GRP for series and parallel systems
are illustrated and the impacts of downtime cost and setup
cost are analyzed through numerical examples in Section 4.
Finally, some conclusions are drawn in the last section.

2. MATHEMATICAL MODELS

Consider a system consists of two components (P;, i=1,
2) and the lifetime distributions of two components follow the
Weibull distribution  fi(t) = & B (eit)? e @D t>0. By

definition of a failure rate function, the failure rate function
and the cumulative failure rate function of a Weibull
distribution are hi(t)=aifi(ait)A? and Hi(t) = (ait)? |
respectively. The connection method of two components can
be in series or parallel as shown in Figures 1 and 2.

P. P2

Figure 1. Two-component series system.
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Figure 2. Two-component parallel system.

For a two-component series system, any component
fails will lead to the system breakdown. However, for a two-
component parallel system, either one component fails will
not cause the system breakdown unless both fails. Due to the
inevitable deterioration of the component, the component
may fail more frequently as its age or usage increases.
Therefore, an appropriate preventive replacement may be
suitable to reduce the number of failures and maintains the
operation of the component normally. To reduce the number
of failures, a preventive replacement action is usually adopted
to replace each component at a certain age. Under this
replacement policy, two replacement models are considered:
(1) individual replacement which each component is replaced
separately; and (2) group replacement which two components
are replaced simultaneously. For series and parallel systems,
individual and group replacement cost models are constructed
and compared as follows.

2.1 IRP- Series System

For the component of series system, suppose that the
age of the component P reaches a certain time Ti, a
replacement action is performed and incurs a replacement
cost Cri, i=1, 2, a systemdowntime cost Car1+Car2 and a setup
cost Cs. Therefore, the expected total replacement cost per
unit time is (Cri+Cdr1+Car2+Cs)/Ti, i=1, 2. When component P;
fails before replacement time T;, the failed component is
rectified by a minimal repair. Since the failed component is
rectified by minimal repair, the failure process of the
component Pj is a nonhomogeneous Poisson process. Each
minimal repair of component P; will incur a fixed repair cost
Cmi, i=1, 2 and a system downtime cost Cami+Cdm2. Before
replacing the component Pj, the expected total minimal repair
cost per unit time becomes (Cmi+Cdmi+Cam2)Hi(Ti)/Ti=



(Cmi+Cam+Cam2)(ai Ti)A/Ti, for i=1, 2. Therefore, the expected
total cost per unit time is

E[TCsi (T2, T2)]

_ i (Cri +Cam + Cane)(@iTi)# +Cri +Can +Car2 +Cs (1)
I Tl
i=1

2.2 GRP- Series System

Suppose that the components P1 and P, of series system
are replaced at a common time Tg. Similar to the IRP, when
components P1 and P are replaced at time Tg, the expected
total replacement cost per unit time becomes
(Cr1+Cr2+Car1+Cyr2+Cs)/ Tg. Within group rep lacement time Ty,
the expected total minimal repair cost per unit time is
(Cmi*+Cami+Cam2)Hi(Tg)/ Tg =(Cmi+Cam+Cam2)(ca Tg)H Ty, i=1, 2.
Therefore, within group replacement time Tg, the expected
total cost per unit time of systemis

E[TCsc(Ty)]

2
> [(Crmi +Cam + Came)(etiTg)? + Cri]+Can +Carz +Cs (2)
_ia
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2.3 IRP- Parallel System

For parallel system, any component fails will not cause
the system breakdown. The repair and replacement policy of
components is the same as section 2.1. When the component
Pi is replaced at time T;, the expected total replacement cost
per unit time is (Cri+Can+Cs)/Ti, i=1, 2. Within the
replacement time Ti, the expected total repair cost per unit
time is (Cmi+Cami)Hi(Ti)/Ti=(Cmi+Cami)(ca Ti)?/Ti, for i=1, 2.
Therefore, the expected total cost per unit time of systemis

E[TCpi (T2, T2)] = 22: (Crmi + Comi (cxiTi )_fi +Cri +Cari +Cs 3
i=1 i

2.4 GRP- Parallel System

Similar to sections 2.2 and 2.3, under the GRP, two
components Py and P2 of parallel system are replaced at a
common time Tg. When two components P:1 and P2 is
replaced at time Tgy, the expected total replacement cost per
unit time is (Cr1+Cr2+Can+Car2+Cs)/Tg.  Within  group
replacement time Tg, the expected total minimal repair cost
per unit time is (Cmi+Cami)Hi(Tg)/ Tg=(Cmi+Cami)(ca Tg)?/Tg, for
i=1, 2. Therefore, within group replacement time Tg, the
expected total cost per unit time of systemis

i[(cmi + Cani (i Tg )ﬂi + Cri +Cari] + Cs
E[TCre (Tg)] == T, 4)

The objective of this paper is to find the optimal
individual replacement time (T;",T5') and group replace ment
time Ty for two components such that the expected total
cost per unit time in Egs. (1)-(4) is minimized.

3. OPTIMAL REPLACEMENT POLICY

For series and parallel systems, the optimal individual
and group replacement times of two components are derived
as follows.

3.1 Optimal IRP- Series System

From Eq. (1), the optimal individual replacement time Tj,
i=1, 2 can be obtained by taking the first partial derivatives of
Eq. (1) with respect to Ti and setting it equal to 0 as follows.

(6-D)(Cmi+Cdm l"‘cdm2)(6¥1'-|-1')'6’i =(Cri+Car1+Car2+Cs) 5)

From Eq. (5), the optimal individual replacement time can be
obtained as follows.
1

* 1 Cri +Cdr1 +Car2 +Cs B .
Ti == =12 6
' g |:(ﬂi =D (Cni +Cdml+Cdmz)} ©

3.2 Optimal GRP- Series System

Similar to section 3.1, the optimal replacement times Tqy
can be obtained by differentiating Eq. (2) with respect to Tg
and setting it equal to 0. Then, the result is obtained as
follows.

2 2
> (B-1)(Cmi + Camt + Cam2)(«iTg)# =3 (Cri + Cari) +Cs  (7)

From Eq. (7), there is no close-form solution for solving
Tg unless p1=F.. When p1#p2, we can search a Tq to satisfy the
Eq. (7) using any search method. When f1=4.=p, the optimal
group replacement time Tg can be obtained by Eg. (7) as
follows.
1
B
®)

Cr]_ +Cr2 +Cdl’l +Cdr2 +Cs
(B-D[ef (Cra +Camt +Camz) + & (Cmz +Camt +Camz)]

T

3.3 Optimal IRP- Parallel System

In order to obtain the optimal individual replacement



times Ti, i=1, 2, we can differentiate Eq. (3) with respectto T;
and set it equal to 0. Then, the result is obtained as follows.
(i =1)(Cmi +Cami)(iTi)# —(Cri +Cari +Cs) =0 )

From Eqg. (9), the optimal individual replacement time can be

obtained as follows.

1
« _ 1 Cri +Cari +Cs A
= ;i|:(,3i —1)(C:1i + Cdmi):| (10

3.4 Optimal GRP - Parallel System

Similar to section 3.3, we can differentiate Eq. (4) with
respect to Ty and setting it equal to 0. Then, the result is
obtained as follows.

2
Z(ﬂl —1)(Cmi + Cdmi)(aiTg )ﬂ' =Cr1+Cr2 +Cdnt +Car2 +Cs (11)
i=1

Similar to section 3.2, in Eg. (11), the close-form
solution does not exist unless p1=f,. When p1#p2, we can
search a Ty satisfying Eq. (11). When p1=$.=p, the optimal
group replacement time Tg can be obtained by Eq. (11) as

follows.
1

Tr = Cr1+Cry +Cdnt +Car2 +Cs
-
(B-Dlaf (Cm +Cam) + @4 (Crmz + Camz)]

(12)

3.5 Comparisons of IRP and GRP — Series System

When p1=$2=4, we can find a condition to choose IRP or
GRP for the components of series system. Let D1 denote that
E[TCsq (rg*)]_ E[TC, (T,,T,)] and substituting the
optimal individual replacement time ( T", T2') and group
replacement time Ty into Di. Then, the result can be
obtained as follows.

D1 = (Crmt + Cam + Camz) e’ Bl AL — Bi]

(13)
—(Cm2 +Camt + Camz)a4 f[B2 — A]
V="
where A 2[ (Cra+Cro +Can + Cara +Cs) 1 ’
[ (Cmt +Cant +Camz) + @4 (Cmz +Camt +Camz)]
p-1
B, :l:(crl +Cdn + Car2 +Cs):| B

o (Cnt + Camt + Camz) '

E
B, = (Cr2 +Cdn +Cdr2 +Cs) B
¥ (Cma + Camt + Camz) '

When D1=0, the following equation can be obtained.

(92)p Cm2 +Cdm +Cdm2 _ AL—B1 (14)
a’ Cm+Cam+Cime Ba—A

In this case (D1=0), performing IRP and GRP will result in
the same expected total cost per unit time.
Cm2 +Cam +C A —-B
a) If a2\p Lm2 dml dm2
@ (al) Cm +Cdm +Camz  B2—A
thenthe IRP should be adopted.

a2vp Cm2 +Cam +Cam2 _ A—B1

(b) If (71)’3 o+ Carg + Cary > B, A (i.e., D1<0), then
the GRP should be adopted.

From (a) and (b), we can easily select the IRP or GRP for

series system.

(ie., D1>0),

3.6 Comparisons of IRPand GRP — Parallel System

Similar to section 35, Let D; denote that
E[TCrc (Tg)] - E[TCri (T", T2)] and substituting the optimal
individual replacement time (T;",T2') and group replacement
time Tq into D2. Then, theresult can be obtained as follows.

D2 = (Cm1 + Cam)f’ B[ Ao — Bs]

- (Cm2 +Cdm2)a1ﬁﬁ[B4 - Az] (15)
i
where Ay :|: (Crl +Cr2 +Cdn +Car2 +Cs) :| A
[ (Cra + Camt) + @ (Cmz +Camz)]
- A1
Bs — (Cr1+Car +Cs) s
| Otlﬂ (Cm1 +Cdm) '
- p1
By = (CrZ +Cdr2 +Cs) B
| Otf(sz + Cdm2)
When D2=0, the following equation can be obtained.
(ﬂ B Cm2 + Cdmz _A—-Bs (16)

o1’ Cm+Cdam  Ba—~A

In this case (D2=0), performing IRP and GRP will result in
the same expected total cost per unit time.
Cm2+Com2 _ A2 —Bs .

a) If (%2)p=m < i.e., D2>0), then the
®) (Otl) Cm+Cim Ba—A~A ( 2>0)

IRP should be adopted.

275 Cm2 +Camz _ A2 —Bg

b) If (==)7 >
®) (Otl) Cm+Cdm  Ba—FAp

GRP should be adopted.
From (a) and (b), the IRP or GRP of the components can be
easily chosen for parallel system.

(i.e., D2<0), then the



4. NUMERICALANALYSIS

In this section, the performances of the optimal
individual and group replacement policies for series and
parallel systems are evaluated and the impacts of minimal
repair downtime cost (Cami, i=1, 2), setup cost (Cs), and
replacement downtime cost (Car, i=1, 2) for series and
parallel systems are demonstrated through numerical
examples. The following values of parameters are
considered for two components in series and parallel
systems: a1=0.15, a=0.35, f1=/»=2, Cm1=200, Cm2=100,
Cr1=600, Cr2=300.

4.1 Numerical Examples for Series System

Suppose that setup cost Cs=50 and replacement
downtime cost Cdar1=Care=Car=1000, Figure 3 shows that
the choice of the optimal replacement policy does not
change under various minimal repair downtime costs
(Cdm1=Cqm2=Cqm). That is, the GRP should be adopted and
the lower expected total cost per unit time of the system
can be obtained when the replacement downtime cost is
relatively high.

Figure 4 shows that when Cy=132, performing IRP
and GRP will result in the same expected total cost per unit
time under Cs=50 and Cy¢m=1000. When Cg¢r<132, the IRP
should be adopted. Otherwise, the GRP should be adopted.
Similarly, Figure 5 shows that when setup cost Cs=214,
performing IRP and GRP will result in the same expected
total cost per unit time under C¢r=50 and Cym=1000. When
Cs<214, the IRP should be adopted. Otherwise, the GRP
should be adopted.

=50, C;4=1000

E(TCSD
— — E(TCSG)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Cam

Figure 3: The impact of Cam for optimal replace ment policy
of series system.
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Figure 4: The impact of Cqr for optimal replacement policy
of series system.
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Figure 5: The impact of Cs for optimal replacement policy
of series system.

4.2 Numerical Examples for Parallel System

Similar to section 4.1, Figures 6-8 show that the optimal
replacement policy and the expected total cost per unit time
of system under various minimal repair downtime costs
(Cam=Cam2=Cdm), setup cost (Cs) and replacement downtime
cost (Car1=Car2=Cyqr). Figures 6 and 7 show that Cgm and Cur
do not affect the choice of the optimal replacement policy.
That is, the IRP should be adopted and the lowest expected
total cost per unit time of systemcan be obtained.

Figure 8 shows that when setup cost Cs=318, performing
IRP and GRP will result in the same expected total cost per
unit time under C4r=50 and C4qm=1000. When Cs<318, the IRP
should be adopted. Otherwise, the GRP should be adopted.

C.=50, C,;,=1000

E(TCPD)
— — E(TCPG)
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Cam

Figure 6: The impact of Cym for optimal replacement policy
of parallel system.
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Figure 7: The impact of Cqr for optimal rep lacement policy of
parallel system.
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Figure 8: The impact of Cs for optimal replacement policy of
parallel system.

4.3 Comparisons between Seriesand Parallel Systems

In this section, the comparisons of series and parallel
systems on IRP. From Figure 9 and 10, there are some results
can be obtained. Under various Cs, performing IRP or GRP
on parallel system is better than series system and the
reduction percentage (A) of expected total cost per unit time
is significant.

IRP (C;,=50, C,,,=1000)
1800 31.50%

31.00%

30.50%

30.00%

29.50%

) 29.00%
400 | —%—Series System
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—aA

o 100 200 300 400 500 600 700 800

Figure 9: The comparison of series and parallel on IRP under
various Cs.
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Figure 10: The comparison of series and parallel on GRP
under various Cs.

5. CONCLUSIONS

This paper investigates optimal preventive replacement
policies for both two-component series and parallel systems
when minimal repairs are carried out at failures. The
mathe matical cost models of series and parallel systems are
constructed under IRP and GRP. Furthermore, the optimal
individual and group replacement times of two components
are obtained such that the expected total cost per unit time
is minimized. Moreover, the impacts of the downtime cost
(Cam, Car) and setup cost (Cs) on the optimal replacement
policies are analyzed through numerical examples.

In general, we found that the expected total cost per
unit time of series systems is higher than parallel systems.
For series or parallel systems, when the setup cost is
relatively high, we may choose the GRP instead of the IRP.
In addition, when the downtime cost (Cqr) in series system
is relatively high, the GRP should be adopted.

For further study, we may look for an appropriate
preventive maintenance policy instead of replacing the
components if such actions are available.
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