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Abstract. This paper investigates the selection scheme on replacement policies for repairable two-component systems. 

Two components can be connected in series or parallel. Due to the inevitable deterioration of the components, each 

component may fail more frequently as its age or usage increases. Therefore, an appropriate preventive replacement may  

be suitable for reducing the number o f failures and maintains the operation of the component normally. When the age of 

component reaches a pre-specified t ime, it is rep laced with  a replacement cost, a  downtime cost, and a setup cost. Any 

failure before replacement is rectified  by minimal repair and it incurs a min imal repair cost and a downtime cost. In  

particular, when the downtime cost or setup cost is high, it might be worthwhile replacing both components at the same 

time (called group rep lacement policy; GRP) instead of replacing them separately (called indiv idual replacement policy; 

IRP). In th is paper, the selection schemes for IRP and GRP of series and parallel systems are proposed in order to minimize 

the long-run expected cost per unit time. Finally, the IRP and GRP of series and parallel systems are compared through 

numerical examples. 
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1. INTRODUCTION 
 

With the advance of science and technology, 

manufacturing processes of products become more and more 

complex. In general, any manufacturing system may involve 

multip le subsystems (or components) to complete a 

manufacturing p rocess. To ensure the manufacturing process 

runs smoothly, a suitable maintenance strategy for subsystems 

(or components) should be planned and performed. 

Over the past few decades , there are many research 

papers on the min imal repair and replacement policies for a  

single component. Barlow and Hunter (1960) first introduce 

the minimal repair concept into the reliability field and 

further, it is widely adopted. Phelps (1983) considered the 

replacement problem under min imal repair and showed that a 

particular form of control limit policy is optimal in the space 

of all possible policies. In 1983, Nakagawa and Kowada  

defined a minimal repair in the term of the failure rate and 

devices some probability quantities and reliability properties . 

Sheu (1991) proposed a generalization of the b lock 

replacement policy and analyzed for a mult i-unit  system 

which has the specific multivariate distribution. Chien and 

Sheu (2006) developed an extended optimal age-replacement  

policy. They considered an operating system suffers a shock 
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and fails at a certain  age, it is either replaced by a new system 

or it undergoes minimal repair. Li and Peng (2014) 

investigated a type of dynamic behavior in the multi-state 

series-parallel system and used the Markov reward model to  

calculate the system availability and the operation cost. 

For replacement policies, Osaki and Nakagawa  (1975) 

established the age-replacement cost model and further 

derived an optimal replacement policy such that the total 

maintenance cost is min imized. Berg and Epstein (1978) gave 

a ru le for choosing the least costly of the above three policies 

under conditions specified. The implementation of th is rule is 

illustrated for two  special cases, where the distribution of 

item life-time is unifo rm, or 2-stage Erlang. Beichelt (1981) 

introduced a generalized block rep lacement policy and gave 

the long-run cost rate. Furthermore, integral equations of the 

renewal type for the basic reliab ility expressions are derived  

and a numerical example is presented. Sheu et al. (2010) 

considered a periodic rep lacement model with min imal repair 

based on cumulative repair-cost limit and then the minimum-

cost replacement policy is studied by showing its existence, 

uniqueness, and structural properties. 

In repair-rep lacement policy aspect, Elwany et al. (2011) 

considers a replacement prob lem for components whose 

degradation process can be monitored using dedicated 

sensors. Hsu et al. (2015) proposed the impact of the 

downtime cost on the replacement policies for a two-

component series system. They considered the case when 

minimal repairs are carried out at failures and the component 

should be replaced at a certain age. However, most of the 

work did not consider the case when the components are cost-

dependent in performing the maintenance actions. 

In this paper, the indiv idual and group replacement cost 

models of a two-component series or parallel systems are 

constructed and the optimal indiv idual replacement policy  

(IRP) and group replacement policy (GRP) are derived. In  

addition, the selection scheme on IRP and GRP for series and 

parallel systems is proposed and the comparisons of IRP and 

GRP for series and parallel systems are illustrated through 

numerical examples.  

This paper is organized as follows. The mathemat ical 

models are constructed in Section 2. In  Section 3, the optimal 

IRP and GRP are derived and the select scheme on IRP and 

GRP for series and parallel systems is proposed. The 

comparisons of IRP and GRP for series and parallel systems  

are illustrated and the impacts of downtime cost and setup 

cost are analyzed through numerical examples  in Section 4. 

Finally, some conclusions are drawn in the last section. 

 
2. MATHEMATICAL MODELS 

 

Consider a system consists of two components (Pi, i=1,  

2) and the lifetime distributions of two components follow the 

Weibull distribution 0,)()( )(1   tettf
i

ii t
iiii

 . By  

definit ion of a failure rate function, the failu re rate function 

and the cumulative failure rate function of a Weibull 

distribution are 1)()(  i
iiii tth   and i

ii ttH  )()(  , 

respectively. The connection method of two components can 

be in series or parallel as shown in Figures 1 and 2. 

 

P1 P2

 
Figure 1. Two-component series system. 
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Figure 2. Two-component parallel system. 

 

For a two-component series system, any component 

fails will lead to the system breakdown. However, for a two-

component parallel system, either one component fails will 

not cause the system breakdown unless both fails . Due to the 

inevitable deterioration of the component, the component 

may fail more frequently as its age or usage increases. 

Therefore, an appropriate preventive rep lacement may be 

suitable to reduce the number of failures and maintains the 

operation of the component normally. To  reduce the number 

of failures, a  preventive replacement action is usually adopted 

to replace each component at a certain age. Under this 

replacement policy, two replacement models  are considered: 

(1) individual replacement which  each component is replaced  

separately; and (2) group replacement which  two components 

are rep laced simultaneously. For series and parallel systems, 

individual and group replacement cost models are constructed 

and compared as follows. 

 

2.1 IRP - Series System 
 

For the component of series system, suppose that the 

age of the component Pi reaches a certain time Ti, a  

replacement action is performed and incurs a replacement  

cost Cri, i=1, 2, a  system downtime cost Cdr1+Cdr2 and a setup 

cost Cs. Therefore, the expected total replacement cost per 

unit time is (Cri+Cdr1+Cdr2+Cs)/Ti, i=1, 2. When component Pi 

fails before replacement time Ti, the failed component is 

rectified by a minimal repair. Since the failed component is 

rectified by min imal repair, the failu re process of the 

component Pi is a nonhomogeneous Poisson process . Each 

minimal repair of component Pi will incur a fixed repair cost 

Cmi, i=1, 2 and a system downtime cost Cdm1+Cdm2. Before 

replacing the component Pi, the expected total minimal repair 

cost per unit time becomes (Cmi+Cdm1+Cdm2)Hi(Ti)/Ti= 



 

(Cmi+Cdm1+Cdm2)(iTi)
i/Ti, for i=1, 2. Therefore, the expected 

total cost per unit time is 
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2.2 GRP- Series System 
 

Suppose that the components P1 and P2 of series system 

are rep laced at a  common t ime Tg. Similar to  the IRP, when 

components P1 and P2 are replaced at time Tg, the expected 

total replacement cost per unit time becomes 

(Cr1+Cr2+Cdr1+Cdr2+Cs)/Tg. Within group rep lacement time Tg, 

the expected total min imal repair cost per unit time  is 

(Cmi+Cdm1+Cdm2)Hi(Tg)/Tg =(Cmi+Cdm1+Cdm2)(iTg)i/Tg, i=1, 2. 

Therefore, within group replacement time Tg, the expected 

total cost per unit time of system is 
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2.3 IRP- Parallel System 
 

For parallel system, any component fails will not cause 

the system breakdown. The repair and replacement policy of 

components is the same as section 2.1. When the component 

Pi is rep laced at time Ti, the expected total replacement cost 

per unit time is (Cri+Cdri+Cs)/Ti, i=1, 2. With in the 

replacement time Ti, the expected total repair cost per unit  

time is (Cmi+Cdmi)Hi(Ti)/Ti=(Cmi+Cdmi)(iTi)
i/Ti, for i=1, 2. 

Therefore, the expected total cost per unit time of system is 
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2.4 GRP- Parallel System 
 

Similar to sections 2.2 and 2.3, under the GRP, two  

components P1 and P2 of parallel system are replaced at  a  

common t ime Tg. When two components P1 and P2 is 

replaced at time Tg, the expected total replacement cost per 

unit time is (Cr1+Cr2+Cdr1+Cdr2+Cs)/Tg. Within group 

replacement time Tg, the expected total minimal repair cost 

per unit time is (Cmi+Cdmi)Hi(Tg)/Tg=(Cmi+Cdmi)(iTg)i/Tg, for  

i=1, 2. Therefore, within group replacement time Tg, the 

expected total cost per unit time of system is 
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The objective of this paper is to find the optimal 

individual replacement t ime ( *
1T , *

2T ) and group replacement  

time *
gT  fo r two  components such that the expected total 

cost per unit time in Eqs. (1)-(4) is minimized. 

 

3. OPTIMAL REPLACEMENT POLICY 
     

For series and parallel systems, the optimal individual  

and group replacement times of two components are derived 

as follows. 

 

3.1 Optimal IRP- Series System 
 

From Eq . (1), the optimal individual rep lacement time Ti, 

i=1, 2 can be obtained by taking the first partial derivatives of 

Eq. (1) with respect to Ti and setting it equal to 0 as follows. 

 

(i-1)(Cmi+Cdm1+Cdm2)(iTi)
i=(Cri+Cdr1+Cdr2+Cs)     (5) 

 

From Eq. (5), the optimal individual replacement time can be 

obtained as follows. 
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3.2 Optimal GRP- Series System 
 

Similar to section 3.1, the optimal replacement times Tg  

can be obtained by differentiating Eq . (2) with respect to Tg 

and setting it equal to 0. Then, the result is obtained as 

follows. 
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From Eq. (7), there is no close-form solution for solving  

Tg unless β1=β2. When β1β2, we can search a Tg to satisfy the 

Eq. (7) using any search method. When β1=β2=β, the optimal 

group replacement time *
gT  can be obtained by Eq. (7) as 

follows. 
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3.3 Optimal IRP- Parallel System 
 

In order to obtain the optimal individual replacement  



 

times Ti, i=1, 2, we can d ifferentiate Eq. (3) with respect to Ti 

and set it equal to 0. Then, the result is obtained as follows. 
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From Eq. (9), the optimal individual replacement time can be 

obtained as follows. 
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3.4 Optimal GRP - Parallel System 
 

Similar to section 3.3, we can differentiate Eq. (4) with  

respect to Tg and setting it equal to 0. Then, the result is 

obtained as follows. 
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Similar to section 3.2, in  Eq. (11), the close-form 

solution does not exist unless β1=β2. When β1β2, we can 

search a Tg satisfying Eq. (11). When β1=β2=β, the optimal 

group replacement time *
gT  can be obtained by Eq. (11) as 

follows. 
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3.5 Comparisons of IRP and GRP – Series System 
 

When β1=β2=β, we can find a condition to choose IRP or  

GRP for the components of series system. Let D1 denote that 

)],([)]([ *

2

*

1

* TTTCETTCE SIgSG   and substituting the 

optimal indiv idual replacement t ime ( *
1T , *

2T ) and group  

replacement time *
gT  into D1. Then, the result can be 

obtained as follows. 
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When D1=0, the following equation can be obtained. 
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In this case (D1=0), performing IRP and GRP will result in  

the same expected total cost per unit time. 
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 (i.e., D1>0), 

then the IRP should be adopted. 

(b) If 
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 (i.e ., D1<0), then 

the GRP should be adopted. 

From (a) and (b), we can easily select the IRP or GRP for 

series system. 

 

3.6 Comparisons of IRP and GRP – Parallel System 
 

Similar to section 3.5, Let D2 denote that 
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2

*
1

* TTTCETTCE PIgPG   and substituting the optimal  

individual replacement t ime ( *
1T , *

2T ) and group replacement  

time *
gT  into D2. Then, the result can be obtained as  follows. 
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When D2=0, the following equation can be obtained. 
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In this case (D2=0), performing IRP and GRP will result in  

the same expected total cost per unit time. 

(a) If 
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 (i.e., D2>0), then the 

IRP should be adopted. 

(b) If 
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 (i.e., D2<0), then the 

GRP should be adopted. 

From (a) and (b), the IRP or GRP of the components can be 

easily chosen for parallel system. 

 

 



 

4. NUMERICAL ANALYSIS 
 

In this section, the performances of the optimal 

individual and group replacement polic ies for series and 

parallel systems are evaluated and the impacts of minimal 

repair downtime cost (Cdmi, i=1, 2), setup cost (Cs), and 

replacement downtime cost (Cdri, i=1, 2) for series and 

parallel systems are demonstrated through numerical 

examples. The following values of parameters are 

considered for two components in series and parallel 

systems: 1=0.15, 2=0.35, 1=2=2, Cm1=200, Cm2=100, 

Cr1=600, Cr2=300. 

 
4.1 Numerical Examples for Series System 
 

Suppose that setup cost Cs=50 and replacement 

downtime cost Cdr1=Cdr2=Cdr=1000, Figure 3 shows that 

the choice of the optimal replacement policy does not 

change under various minimal repair downtime costs 

(Cdm1=Cdm2=Cdm). That is, the GRP should be adopted and 

the lower expected total cost per unit time of the system 

can be obtained when the replacement downtime cost is 

relatively high. 

Figure 4 shows that when Cdr=132, performing IRP 

and GRP will result in the same expected total cost per unit 

time under Cs=50 and Cdm=1000. When Cdr<132, the IRP 

should be adopted. Otherwise, the GRP should be adopted. 

Similarly, Figure 5 shows that when setup cost Cs=214, 

performing IRP and GRP will result in the same expected 

total cost per unit time  under Cdr=50 and Cdm=1000. When 

Cs<214, the IRP should be adopted. Otherwise, the GRP 

should be adopted.  

 

 

Figure 3: The impact of Cdm for optimal replacement policy 

of series system. 

 

 

Figure 4: The impact of Cdr for optimal rep lacement policy 

of series system. 

 

Figure 5: The impact of Cs for optimal replacement policy 

of series system. 

 
4.2 Numerical Examples for Parallel System 
 

Similar to section 4.1, Figures 6-8 show that the optimal 

replacement policy and the expected total cost per unit time 

of system under various min imal repair downt ime costs 

(Cdm1=Cdm2=Cdm), setup cost (Cs) and replacement downt ime 

cost (Cdr1=Cdr2=Cdr). Figures 6 and 7 show that Cdm and Cdr 

do not affect the choice of the optimal replacement policy. 

That is, the IRP should be adopted and the lowest expected 

total cost per unit time of system can be obtained. 

Figure 8 shows that when setup cost Cs=318, performing 

IRP and GRP will result in  the same expected total cost per 

unit time under Cdr=50 and Cdm=1000. When Cs<318, the IRP 

should be adopted. Otherwise, the GRP should be adopted. 

 

 

Figure 6: The impact of Cdm for optimal replacement policy  

of parallel system. 

 



 

 

Figure 7: The impact  of Cdr for optimal rep lacement policy of 

parallel system. 

 

 

Figure 8: The impact of Cs for optimal replacement policy of 

parallel system. 

 
4.3 Comparisons between Series and Parallel Systems 
 

    In this section, the comparisons of series and parallel 

systems on IRP. From Figure 9 and 10, there are some results 

can be obtained. Under various Cs, performing IRP or GRP 

on parallel system is better than series system and the 

reduction percentage () of expected total cost per unit t ime 

is significant.  

 

 

Figure 9: The comparison of series and parallel on IRP under 

various Cs. 

 

 

Figure 10: The comparison of series and parallel on GRP 

under various Cs. 

 

5. CONCLUSIONS 
 

This paper investigates optimal p reventive replacement 

policies for both two-component series and parallel systems 

when min imal repairs are carried out at failures. The 

mathematical cost models of series and parallel systems are 

constructed under IRP and GRP. Furthermore, the optimal 

individual and group replacement  times of two  components 

are obtained such that the expected total cost per unit time 

is min imized. Moreover, the impacts of the downtime cost 

(Cdm, Cdr) and setup cost (Cs) on the optimal rep lacement 

policies are analyzed through numerical examples.  

     In general, we found that the expected total cost per 

unit time of series systems is higher than parallel systems. 

For series or parallel systems, when the setup cost is 

relatively h igh, we may choose the GRP instead of the IRP. 

In addition, when the downtime cost (Cdr) in series system 

is relatively high, the GRP should be adopted. 

For further study, we may look for an appropriate 

preventive maintenance policy instead of replacing the 

components if such actions are available. 
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