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Abstract. This research studies capacity planning problems with price differentiation and demand uncertainties. 

In response to the concept of sharing economy, capacity sharing is now prevailing in service and manufacturing 

sectors. While flexible capacity is shared by different products or customers, different pricing strategies are 

oftentimes applied to different customer or product groups. As a result, price differentiation of shared capacity is 

prevailing. Although price differentiation is common, the average selling price (ASP) of products is still widely 

used in capacity planning processes to reduce the complexity of capacity planning processes. Under the ASP 

model, distinct price information is omitted and capacity planning fails to reflect all changes in market conditions. 

Therefore, it is crucial to develop a multiple-price model that explicitly considers price differentiation and demand 

uncertainties.  

In this research, demand uncertainties are considered using Markov decision processes over a finite planning 

horizon. The objective is to maximize expected profit and to improve robustness of capacity strategies. According 

to our numerical examples, the resulting profit from multiple-price model is higher than that of the ASP model. 

For systems with high capacity expansion costs and higher product price differentiation, the proposed multiple-

price model can improve overall profit by up to 500%. 
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1. INTRODUCTION 
 

This research discusses the capacity planning under 

product price discrimination and stochastic demand growth. It 

is motivated by sharing economy.  The concept that 

companies use the identical capacity to manufacture different 

products is like product price discrimination. 

Consumers’ purchasing behaviors are highly affected by 

the economic conditions. However, the economic conditions 

fluctuate over time. Although capacity is adjusted to meet 

future demand, capacity excess or capacity shortage would 

result in extra cost and shrink the profit. On the other hand, 

companies use the product price discrimination to seek 

maximized profit. But the prices of products are usually 

represented as average selling price (ASP) in companies’ 

capacity planning processes. Although ASP simplifies the 

complexity of the problem, the information of each product 

about profit is omitted, especially in the case of insufficient 

capacity. When the capacity is insufficient, the use of ASP in 

capacity planning cannot accurately identify approximate 

revenue since the ASP model dilutes the information about the 

composition of products’ prices and production quantities. 

The objective of this study is to maximize the expected 

profit and the robustness of capacity plan under stochastic 

demand. The decision variable is the optimal quantity of 

capacity expansion in each period given some scenario and 
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accumulated capacity level. The scenario transition in each 

period follows the Markov process. The dynamic capacity 

planning model connects demand growth and capacity 

planning over time. The use of multi-price helps us obtain 

much more expected profit and achieve higher utilization of 

capacity. Instead of using ASP, the capacity planning model 

adopting multiple-price as the price factor is showed to have 

better profit performance and higher capacity utilization. 

 

2. RELATED LITERATURE 
 

The demand of products usually varies with times. For the 

deterministic demand growth case, demand can be predicted in 

advance to simplify the problem. Luss (1982) defined three 

demand growth types: linear demand growth, exponential 

demand growth and exponential demand with saturation rate. 

The demand forms a cyclic pattern, so the forecast demand 

data can be used in the capacity planning models. Kogan and 

Herbon (2008) used a decomposition approach to solve a 

single product capacity planning model with periodic demand 

variation. Sankul et al. (2016) develops a capacity planning 

and facility selecting model to improve overall capacity 

planning of organization 

In the literature about capacity planning, mathematical 

programming approaches like stochastic programming or 

linear programming are widely used to help find the optimal 

solutions. Bienstock and Shapiro (1988) use stochastic 

programming to solve an optimization problem of resource 

acquisition. Derek and Fernando (2016) shows the impact of 

trading on market concentration, prices, and consumer surplus. 

Capacity planning is usually a long-term issue. Dynamic 

programming is suitable to solve problems of this type. Rather 

than expanding capacity only, an expanding work by Millen 

(1974), Erlenkotter (1977) proposed a set of policies with three 

decisions: capacity expansion, inventory and import, to a 

strategic capacity planning problem. Botterud and Korpås 

(2007) considered a power generation investment case and 

formulated the optimal capacity investment model by 

stochastic dynamic programming. The uncertainty in demand 

was considered and real option was also used in this research. 

In our research, we present a model in which the demand 

is affected by time and price simultaneously. The use of 

Markov properties would be more realistic to characterize the 

real demand scenario evolution. The ability of a firm to apply 

price discrimination gets little attention. This research mainly 

discusses the capacity planning under stochastic demand 

growth and multi-price products, aiming to reach the 

maximized total expected profit in a finite planning horizon. 

 

3. PROBLEM DESCRIPTION 
 

Because of the existence of flexible capacity, different 

products commonly share the same capacity and are sold at 

different prices to maximize revenue. Price differentiation as 

well as capacity flexibility enables manufacturers to yield 

much more profit by offering various products. Since the 

capacity is limited, the arrangement of capacity for different 

types of product is very crucial.  

In reality, companies usually use the ASP to reduce 

complexity of the original multiple-price problem. However, 

the lack of consideration about the future capacity level gives 

rise to some problems like the deviation between the estimated 

ASP and the real ASP. In addition, the simplified ASP model 

neglects the relationship between multiple-price products and 

their corresponding demands.  

This study assumes that the demand scenario transition 

from period to period follows Markov process. Thus, the 

dynamic programming is hired to find the optimal capacity 

expansion quantity in each period to meet uncertain demand. 

Machine transference, outsourcing and inventory are not 

considered in our model, and demand is fully fulfilled by 

capacity. 

 

4. DYNAMIC CAPACITY PLANNING MODEL 
 

The decision variable of the model is the capacity 

expansion quantity. The objective is to maximize profit. The 

optimal capacity expansion quantity is obtained by the 

dynamic programming technique. Basic elements for the 

dynamic programming model are defined in the following 

paragraphs. 

The state( 𝑠𝑡(𝑐𝑡 , 𝑑𝑗,𝑡(∙)) ) involves the current capacity 

level( 𝑐𝑡 ) and the demand( 𝑑𝑗,𝑡(∙) ) in different economic 

environment j( 𝑗 ∈ {H, M, L} , H:High, M:Medium, L:Low). 

Different capacity expansion actions( 𝑎𝑡 ) are made under 

different states. The cost of capacity expansion(EC) should be 

paid in the current period(t), while the purchased capacity 

appears in the next period. 

Every decision has an effect on the state in the next period. 

That is to say, the state of the next period 𝑠𝑡+1(𝑐𝑡+1, 𝑑𝑗′,𝑡+1(∙)) 

is affected by the state of this period 𝑠𝑡(𝑐𝑡 , 𝑑𝑗,𝑡(∙))  and the 

action 𝑎𝑡. Thus, the transition probability is defined as below: 

𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) = 𝑃(𝑐𝑡+1, 𝑑𝑗,𝑡+1(∙)|𝑐𝑡 , 𝑑𝑗,𝑡(∙), 𝑎𝑡) 

                = 𝑃(𝑐𝑡+1|𝑐𝑡 , 𝑎𝑡) × 𝑃(𝑑𝑗,𝑡+1(∙)|𝑑𝑗,𝑡(∙)) 

Since the demand shift is independent of the capacity 

level, the transitional probability can be decomposed into two 

parts, transitional probability about capacity change and about 

demand shift. The left part talks about capacity. If the capacity 

level in the next period is equal to the current capacity plus the 

capacity expansion quantity, 𝑐𝑡+1 = 𝑐𝑡 + 𝑎𝑡 , then 



 
 

𝑃(𝑐𝑡+1|𝑐𝑡 , 𝑎𝑡) = 1   otherwise, 𝑃(𝑐𝑡+1|𝑐𝑡 , 𝑎𝑡) = 0 . The right 

part is about demand shift. We use the one-step transition 

probability matrix like below to describe the relationship of 

consecutive market states. 

  𝐻          𝑀            𝐿 

𝐻
𝑀
𝐿

[

𝑃(𝑑𝐻,𝑡+1|𝑑𝐻,𝑡) 𝑃(𝑑𝑀,𝑡+1|𝑑𝐻,𝑡) 𝑃(𝑑𝐿,𝑡+1|𝑑𝐻,𝑡)

𝑃(𝑑𝐻,𝑡+1|𝑑𝑀,𝑡) 𝑃(𝑑𝑀,𝑡+1|𝑑𝑀,𝑡) 𝑃(𝑑𝐿,𝑡+1|𝑑𝑀,𝑡)

𝑃(𝑑𝐻,𝑡+1|𝑑𝐿,𝑡) 𝑃(𝑑𝑀,𝑡+1|𝑑𝐿,𝑡) 𝑃(𝑑𝐿,𝑡+1|𝑑𝐿,𝑡)

] 

The vertical axis is the current market state, while the 

horizontal axis is the market state in the next period. Each 

element in the matrix indicates the transition probability under 

some state combination. Note the sum of elements in each 

column should be one. 

The production quantity is the minimum of demand 

quantity and capacity. The highest price( 𝑝1 ) product is 

produced first, 𝑄1,𝑡 = 𝑚𝑖𝑛(𝑑𝑗,𝑡(𝑝1), 𝑐𝑡) , then the second 

highest price( 𝑝2 ) product, 𝑄2,𝑡 = 𝑚𝑖𝑛(𝑑𝑗,𝑡(𝑝2) − 𝑄1,𝑡 , 𝑐𝑡 −

𝑄1,𝑡). Note that the production quantity should be nonnegative. 

The reward(𝑟𝑡) of each period depends on the state and 

the expansion decision in each period. In the multiple-price 

model, the reward function in the capacity planning process is 

𝑟𝑡(𝑠𝑡 , 𝑎𝑡) = ∑ (𝑝𝑖,𝑡 × 𝑄𝑖,𝑡) − 𝐸𝐶 × 𝑎𝑡𝑖  . The revenue from 

selling products minus the capacity procurement cost 

constitutes the reward function at that period.  

We also build a comparison model that uses ASP in the 

capacity planning process. In contrast, the reward function for 

the ASP model is 𝑟𝑡,𝐴𝑆𝑃(𝑠𝑡 , 𝑎𝑡) = 𝐴𝑆𝑃 × ∑ 𝑄𝑖,𝑡 − 𝐸𝐶 × 𝑎𝑡𝑖 . 

The primary difference between the ASP model and the 

multiple-price model is how they estimate reward. In the 

multiple-price model, we sum the products of the price and the 

corresponding demand quantity for each item to obtain the 

current selling revenue. In contrast, the ASP model uses a 

simpler approach. The product of the estimated ASP and total 

demand quantity is regarded as the current selling revenue. 

Due to the uncertain economic climate fluctuation, it’s 

almost impossible to predict future demands precisely. Based 

on the assumption, they estimate the expected demand quantity 

of each product. According to the demand forecasts and price 

information, the ASP can be acquired. 

In the future period n and certain economic environment, 

product i’s approximate demand 𝑄𝑖,𝑛  is 𝑑𝑗=𝑀,𝑛(𝑝𝑖,𝑛) . The 

revenue contributed by each product is 𝑄𝑖,𝑛 × 𝑝𝑖,𝑛. Thus, the 

ASP in period n is 

𝐴𝑆𝑃𝑛 =
∑ 𝑝𝑖,𝑛 × 𝑄𝑖,𝑛𝑖

∑ 𝑄𝑖,𝑛𝑖

 

Using the similar method, the ASP for different periods 

can be calculated. Hence, the original multiple-price problem 

can be reduced to an ASP capacity planning form. Nevertheless, 

due to the moderate demand forecast assumed in the ASP 

model, the actual demand uncertainty characteristic is ignored. 

The gap between the ASP model and the practical problem 

might lead to the overinvestment problem mentioned in the 

previous section. 

We use 𝑣𝑡
∗(𝑠𝑡) to stand for the maximized total expected 

profit for state 𝑠𝑡  from time t to the end of the planning 

horizon. The optimality equation maximizes the sum of current 

reward and expected future accumulated reward. The 

optimality equation is defined as 

𝑣𝑡
∗(𝑠𝑡) = max

𝑎𝑡

{𝑟𝑡(𝑠𝑡 , 𝑎𝑡) + ∑ 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) ×𝑖 𝑣𝑡+1
∗ (𝑠𝑡+1)}. 

Iterative algorithm is widely used to solve dynamic 

programming models. Since there is a one period lead time for 

capacity expansion,  capacity expansion in the last period(T) 

will never be optimal. Thus, 𝑎𝑇 = 0. Therefore, the optimality 

equation in the last period is equal to the reward function in the 

last period. The implementation procedure of the iterative 

algorithm is shown below: 

Step1: When t=T, calculate 𝑣𝑇
∗ (𝑠𝑇)  for each state 𝑠𝑇 . 

𝑣𝑇
∗ (𝑠𝑇)  is the revenue obtained by only selling products 

without purchasing new capacity in the last period. The 

terminal condition is 

𝑣𝑇
∗ (𝑠𝑇) = max

𝑎𝑇

{𝑟𝑇(𝑠𝑇 , 𝑎𝑇)} = 𝑟𝑇(𝑠𝑇 , 0) 

Step2: Given 𝑣𝑡+1
∗ (𝑠𝑡+1)  for all 𝑠𝑡+1,   𝑣𝑡

∗(𝑠𝑡)  can be 

defined iteratively by the optimality equation for each capacity 

level 𝑠𝑡 . In the optimality equation, an optimal capacity 

expansion quantity to maximizes the sum of current reward 

(current revenue minus capacity expansion cost) and expected 

future profit for every 𝑠𝑡. 

𝑣𝑡
∗(𝑠𝑡) = 𝑚𝑎𝑥

𝑎𝑡

{𝑟𝑡(𝑠𝑡 , 𝑎𝑡) + ∑ 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) × 𝑣𝑡+1
∗ (𝑠𝑡+1)

𝑖

} 

Step3: Repeat step 2 until 𝑡 = 0. 

In the backward induction algorithm, 𝑣𝑡
∗(𝑠𝑡)  would be 

the optimal expected total profit under each initial capacity 

level within the planning horizon. The optimality equation 

generates not only the optimal expected profit but also the 

optimal control policies by: 

𝑎𝑡
∗(𝑠𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎𝑡

{𝑟𝑡(𝑠𝑡 , 𝑎𝑡)

+ ∑ 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) × 𝑣𝑡+1
∗ (𝑠𝑡+1)

𝑖

} 

 

 
5. NUMERICAL EXAMPLE 

 

The main purpose of this section is to investigate 

investment behaviors of the two models and verify the 



 
 

performance of the multiple-price model.  

To realize the investment actions within the planning 

horizon, we generate 100 sets of random demand scenarios for 

simulation. Each set of demand scenarios is a 20-period 

demand data, which represents the possible demands in the 

future. During each simulation, the investment action at each 

period is made according to the decision policy proposed by 

the dynamic programming algorithm. Actions and revenues for 

the two models in each period are recorded for comparison.  

At the beginning of the planning horizon, the ASP model 

is more active than multiple-price model. Since 𝐴𝑆𝑃𝑡, for any 

set of discriminated price, the average price must be greater 

than the lowest price. Therefore, the marginal value of adding 

capacity is certainly higher in the ASP model. That is why the 

ASP model invests more in capacity expansion. 

In the later periods, in the face of real demand and 

capacity shortage, the multiple-price model is able to grab 

more profit by taking advantage of the price discrimination. 

The production priority would be given to the product with 

higher price. In contrast, the ASP model doesn’t take into 

account this factor, so the expected revenue obtained in the 

ASP model will be smaller than that in the multiple-price 

model. Besides, if the expected revenue growth gained by the 

capacity enhancement can’t offset the investment cost in the 

following stages, it’s not profitable to engage in capacity 

expansion. Based on the two reasons, the ASP model would 

stop increasing the capacity level earlier. 

 

6. CONCLUSION 
 

There exist three significant differences between the 

multiple-price model and the ASP model. First, at the earlier 

stages, the ASP model would be more aggressive in capacity 

expansion because the marginal loss caused by capacity 

shortage is relatively high. Second, the ASP model would stop 

its capacity expansion action earlier as a result of the lack of 

profit advantages from price discrimination. Third, the overall 

capacity investment decisions become more conservative as 

the capacity level increases, planning horizon rolls, or 

economic environment goes down. Since most mainstream 

capacity planning manners adopt the ASP as the decision 

parameter, we provide following advices based on our 

observations. First, to avoid excessive capacity enhancement 

at the earlier stages, the capacity investment quantities could 

be slightly less than those provided by the ASP model. Second, 

the ASP model usually ends capacity expansion too early, so 

it’s encouraged to extend the capacity investments under 

prosperous market state. In addition, taking advantage of 

demand curves to estimate the long-term revenue, enterprises 

can easily establish the optimal pricing policies, thereby 

maximizing their future profit. 

In this research, we only consider the single capacity 

expansion problem. Future research can extend to the topics 

about additional decisions like multiple capacity or technology 

acquisition, making the capacity decision model more realistic. 

Besides, service level and utilization rate are not employed as 

evaluation criterion. If the objective is to minimize idle 

capacity, idling cost should be considered to prevent the 

occurrence of idle machines. On the other hand, if managers 

are concerned about service level, the constraints to avoid 

production shortage or the shortage penalties can be 

incorporated into the decision model. 
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