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Abstract. The Orienteering Problem (OP) is a routing problem that has numerous applications in various fields such as 

logistics and tourism. The objective is to determine a subset of nodes to visit so that the total collected score is maximized 

and a given time budget is not exceeded. The extensive application of OP has led to many different variants, including the 

Team Orienteering Problem (TOP) and the Orienteering Problem with Time Windows (OPTW). In this paper, the TOP with 

Variable Profits (TOPVP) is studied. The main characteristic of the TOPVP is that the amount of score collected from a 

particular node depends on the duration of stay on that node. We first propose a mathematical model for the TOPVP. We use 

the AIMMS Outer Approximation (AOA) algorithm to solve modified benchmark instances. We then propose a simple 

algorithm based on Iterated Local Search in order to solve some modified benchmark instances. Finally, we conclude that 

ILS is able to produce results which are comparable to those solved by the AOA algorithm.    
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1. INTRODUCTION 
 

The Orienteering Problem (OP) is a multi-level 

optimization problem that has numerous applications in 

various fields such as logistics (Golden et al., 1987) and 

tourism (Souffriau et al., 2008). Vansteenwegen et al. (2011) 

formally defines the OP as a combination of node selection and 

determining the shortest Hamiltonian path between the 

selected nodes. The main objective is to determine a path, 

limited by the total travel time or distance, which visits some 

nodes in order to maximize the collected score from visited 

nodes.  

The Team Orienteering Problem (TOP) is an extension of 

the OP with multiple paths. Each path is limited by the total 

travel time. The objective is to maximize the total collected 

score from all paths. Some recent works related to the TOP can 

be found in Dang et al. (2013), Ferreira et al. (2014) and Ke et 

al. (2015). There are many different variants of the OP, such as 

the (Team) Orienteering Problem with Time Windows 

((T)OPTW), the Time Dependent Orienteering Problem 

(TDOP) and so on. Vansteenwegen et al. (2011) provide a 

comprehensive survey about the OP and its variants up to the 

year 2009. Gunawan et al. (2016) extended the survey by 

focusing on the most recent works of the OP and its variants. 
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One of the recent variants of the OP is the Orienteering 

Problem with Variable Profits (OPVP), as presented by 

Erdoğan and Laporte (2013). In the OPVP, a visit at a particular 

node can be extended in order to collect more scores. In order 

to replicate such a situation, Erdoğan and Laporte (2013) 

introduced discrete passes, where each pass on a particular 

node represents a constant time incurred. The more passes the 

visit made, the longer the duration of stay is. 

In this paper, we introduce a new variant of the OPVP, 

namely the Team OP with Variable Profits (TOPVP). In the 

context of logistic applications, a path can be referred as a 

vehicle that needs to visit certain number of nodes and profits 

from nodes are considered as collected scores. The TOPVP 

extends the OPVP by considering multiple paths/vehicles. 

Therefore the total collected scores from all paths is the main 

objective of the TOPVP.  

We introduce a mathematical model for the TOPVP. First, 

we solve the mathematical model by the AIMMS Outer 

Approximation algorithm (AOA) solver. Due to the limitation 

of solving large instances, we then propose a heuristic which 

is based on Iterated Local Search (ILS). We conclude that the 

proposed algorithm performs well with short computation 

times.     

The remainder of this paper is as follows. In Section 2, a 

literature review of the OP including its variants is provided. 

The problem description including the mathematical model is 

detailed in Section 3. In Section 4, the proposed algorithms are 

described. Section 5 reports numerical experiments that were 

performed on benchmark instances. Finally, in Section 6, we 

summarize the main achievements and future works. 

 

2. LITERATURE REVIEW 
 

Tsiligirides (1984) first defined the standard Orienteering 

Problem (OP). Important assumptions include perfect 

knowledge over the score specified for each node and the time 

incurred for the edges. In addition, each node can only be 

visited once except the start and the end nodes which 

commonly refer to the same node. In this paper, we regard the 

start and end nodes as the same node. 

One characteristic of the classical OP is that it is 

prohibited from staying at any node during a visit; the full 

profit is collected upon reaching the node. In other words, the 

time spent in a particular node is assumed to be zero. However, 

in certain situations especially related to logistics problems, the 

time spent in a particular node for a vehicle to unload the 

delivery has to be considered. This problem is referred to as 

the OPVP (Erdoğan & Laporte, 2013).  

In the OPVP, the vehicle is permitted to prolong the 

duration of stay. In this case, each node is assigned with a profit 

that can potentially be collected where the actual collected 

amount depends on the time spent on the node. The vehicle is 

not compelled to collect the full profit. Erdoğan and Laporte 

(2013) introduce discrete passes to represent the vehicle’s 

duration of stay at a particular node for the discrete model of 

OPVP. More specifically, making a pass means staying a 

predefined amount of time at a node. The amount of time spent 

on a node is additive according to the number of passes made. 

The profit collected over the duration of stay is described using 

growth/decay functions, dictating the rate of increase/decrease 

of profit collected per pass made. The rest of the conditions for 

OPVP remain identical to the OP. Hence, making multiple 

passes on a node does not equate to visiting the node multiple 

times since each node can only be visited once.  

A unified branch-and-cut algorithm for OPVP was 

proposed as the solution approach, using adapted inequalities 

from the Covering Tour Problem (CTP) formulation 

(Gendreau, Laporte, & Semet, 1997). Since no prior research 

was done, there were no benchmark instances available for 

OPVP. As such, Erdoğan and Laporte (2013) modified the 

Travelling Salesman Problem (TSP) test instances from 

TSPLIB. Even though optimality was achieved for most of the 

test instances, excessive computation times were required for 

the larger instances. 

Considering the limited literature available for the OPVP, 

reviewing solution approaches to TOP may provide deeper 

insights into the development of heuristics for TOPVP. This is 

because TOP and TOPVP share largely similar characteristics 

with the exception of the variable profits component.  

Chao et al.’s (1996a) proposed a heuristic that involved 

neither searching techniques nor acceptance of infeasible 

intermediate solutions. Instead, Chao et al.’s heuristic involves 

two phases: initialization and improvement. In the 

initialization phase, a feasible solution is constructed using 

vertices that are furthest from the depot. Additional paths 

involving vertices not in the initial feasible solution are 

constructed in this phase as well. The improvement phase 

consists of iterating the sequence of two-point exchange, one-

point movement and 2-Opt until terminating conditions are 

met.  

Boussier, Feillet and Gendreau (2007) proposed a Branch 

& Price algorithm using column generation to solve the relaxed 

master problem and then using the branch-and-bound method 

to obtain an integer solution. Archetti, Hertz and Speranza 

(2007) proposed four comparable metaheuristics that are 

variants of the tabu search and variable neighbourhood search 

heuristics. The metaheuristics first generate an initial feasible 

solution using the initialization phase from Chao et al.’s (1996a) 

heuristic.  

According to Vansteenwegen et al.’s survey (2011), 

Archetti et al.’s proposed metaheuristics are one of the leading 

algorithms for TOP in terms of achieving best known solution, 

average gap to best known solution and average computation 

time. In addition, Vansteenwegen et al. noted that high-

performing algorithms are inclined to construct feasible paths 

for non-included vertices, allow infeasible solutions during the 



 

 

search procedure as well as alternate between objective value 

increasing and travel time decreasing operators.  

Considering that the solution approaches to TOP are well 

researched as well as able to produce high-performing and 

credible results, it is reasonable to adapt solution approaches 

to TOP for TOPVP. Notably, both Archetti et al.’s and Chao et 

al.’s heuristics involve elements of iterated local search (ILS) 

method, a method that can be easily implemented. Thus, it is 

possible to use the ILS method as a solution approach to 

TOPVP if the operators can be adapted to accommodate the 

variable profit component. 

 

3. Team Orienteering Problem with Variable Profit 
 

3.1 Problem Description 
 

The TOPVP can be described on an undirected graph G = 

(N, E), where N = {0, 1, …, n} is the set of nodes and E is the 

set of edges. Nodes 1 to n are potential nodes to visit, whereas 

node 0 corresponds to the start and end nodes of the paths. 

Each node 𝑖 ∈ 𝑁  is designed with a score Si as well as an 

associated collection parameter  𝛼𝑖 ∈ [0,1] . The amount of 

score collected at each node i depends on the duration of stay 

at that node and its collection parameter 𝛼𝑖 . The duration of 

stay at nodes is represented by discrete passes. Each pass made 

at node i incurs a constant time cost  𝑟𝑖  . The collection 

parameter is used to model the decay of the collected score 

where each pass made at a node allows collecting 100  𝛼𝑖 

percent of the remaining score.    

A travel time tij is associated with every edge (𝑖, 𝑗) ∈ 𝐸. 

Thus, the total travel time on a particular path is contributed by 

the travel time across edges as well as the number of passes 

made at visited nodes. The objective of the TOPVP is to 

determine a set of paths P such that the collected score by all 

paths is maximized. The amount of time required to traverse 

between two nodes (𝑖, 𝑗) is assumed to be symmetrical (tij = 

tji). In addition, the travel time associated with every edge 

satisfies the triangle inequality. Standard constraints applied to 

the OP (Vansteenwegen et al., 2011) are also applied in the 

TOPVP, such as each node can only be visited at most once 

except the start node which is the same with the end node, each 

path has to be started and ended at the start and end nodes, 

respectively, and each path is limited by the time budget T. 

     

3.2 Mathematical Model 
 

The formulation for the TOPVP is extended from the 

OPVP discrete model (Erdoğan and Laporte, 2013). The 

theoretical maximum number of passes at node i is denoted 

as  𝑚𝑖 (≤ ⌊(𝐿 − 2𝑡0𝑖)/𝑟𝑖⌋) . Below is the list of decision 

variables for the mathematical model.       

 

Decision Variables: 

xijp = 1, if the vehicle traverses edge (𝑖, 𝑗) ∈ 𝐸 on path p; 0, 

otherwise 

yilp = 1, if l or more passes are performed on node i on path p; 

0, otherwise 

Np = number of nodes visited by path p; including node 0 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑆𝑖𝑖∈V\{0} ∑ 𝛼𝑖(1 − 𝛼𝑖)𝑙−1 𝑦𝑖𝑙𝑝𝑙∈{1,…,𝑚𝑖}  (1) 

Subject to: 

∑ 𝑥0𝑗𝑝𝑗:(𝑖,𝑗)∈𝐸,𝑝∈𝑃 = ∑ 𝑥𝑖0𝑝𝑖:(𝑖,𝑗)∈𝐸,𝑝∈𝑃 = |𝑃| (2) 

∑ 𝑦𝑖1𝑝𝑝∈𝑃 ≤ 1, (𝑖 ∈ 𝑉\{0}) (3) 

∑ 𝑥𝑖𝑘𝑝(𝑖,𝑘)∈𝐸,𝑘≠0 = ∑ 𝑥𝑘𝑗𝑝(𝑘,𝑗)∈𝐸,𝑘≠0 = 𝑦𝑘1𝑝, (𝑝 ∈ 𝑃, 𝑖 ≠ 𝑗) (4) 

𝑦𝑖𝑙𝑝 ≤  𝑦𝑖,𝑙−1,𝑝, (𝑖 ∈ 𝑉\{0}, 𝑙 ∈ {2, … , 𝑚𝑖}, 𝑝 ∈ 𝑃) (5) 

𝑦𝑖(𝑚𝑖+1)𝑝 = 0, (𝑖 ∈ 𝑉\{0}, 𝑝 ∈ 𝑃) (6) 

∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑝(𝑖,𝑗)∈𝐸,𝑖≠𝑗 + ∑ 𝑟𝑖𝑖∈𝑉 ∑ 𝑦𝑖𝑙𝑝𝑙∈{1,…,𝑚𝑖} ≤ 𝑇, (𝑝 ∈ 𝑃) (7) 

2 ≤ 𝑢𝑖𝑝 ≤ 𝑁𝑝, (𝑖 ∈ 𝑉\{0}, 𝑝 ∈ 𝑃) (8) 

𝑢𝑖𝑝 − 𝑢𝑗𝑝 + 1 ≤ (𝑁𝑝 − 1)(1 − 𝑥𝑖𝑗𝑝), (𝑖, 𝑗 ∈ 𝑉\{0}, 𝑝 ∈ 𝑃) (9) 

𝑦01𝑝 = 0, (𝑝 ∈ 𝑃)                                   (10) 

𝑦𝑖𝑙𝑝 = 0 𝑜𝑟 1, (𝑖 ∈ 𝑉\{0}, 𝑙 ∈ {1, … , 𝑚𝑖}, 𝑝 ∈ 𝑃)         (11) 

𝑥𝑖𝑗𝑝 = 0 𝑜𝑟 1, ((𝑖, 𝑗) ∈ 𝐸, 𝑝 ∈ 𝑃)                      (12) 

The objective function (1) is to maximize the total 

collected scores from visited nodes from all paths. It is worth 

noting that the total profit collected from each node will then 

be 𝑆𝑖 ∑ 𝛼𝑖(1 − 𝛼𝑖)
𝑙−1 𝑦𝑖𝑙𝑝𝑙∈{1,…,𝑚𝑖}   resembling a finite 

geometric series. Constraints (2) designate node 0 as the start 

and end nodes for each path. Constraints (3) ensure that across 

all paths, each node can only be visited at most once with the 

exception of node 0. Constraints (4) ensure the connectivity 

between the edges and the node. In other words, each node that 

is visited must be the origin and the destination for a pair of 

edges.  

Constraints (5) ensure that in order to make further passes 

at a particular node, the preceding pass must be made. 

Constraints (6) ensure that the paths do not exceed the 

maximum allowable passes of the visited nodes. If the 

maximum allowable passes of all nodes are not limited by 

exogenous reasons, then constraints (6) can be relaxed. 

Constraints (7) ensure that the total time allocated does not 

exceed the time budget T for every path. Since both edge costs 

and time incurred from making passes at nodes are subtracted 

from the total time allocated, costs and time are treated as 

synonymous in this paper. Constraints (8) and (9) prevent the 

forming of subtours. Constraints (10) ensure that no passes are 

made at node 0. Constraints (11) and (12) are integer 

constraints. 

Erdoğan and Laporte (2013) noted that in the case where 

𝑎𝑖 = 1  for all  𝑖 ∈ 𝑉\{0} , the OPVP is reduced into a 

Selective Travelling Salesman Problem (STSP) (Laporte & 



 

 

Martello, 1990). Since STSP is NP-Hard and is a special case 

of OPVP, by extension, TOPVP is NP-Hard. This implies that 

an exact solution algorithm might be beyond computational 

reach and that attempting to obtain a sub-optimal solution 

through heuristics will be more appropriate. 

 
4. ALGORITHMS 

 

We propose two different approaches to solve the TOPVP: 

1) the AIMMS Outer Approximation algorithm (AOA) and 2) 

an Iterated Local Search algorithm. Each of these approaches 

will be explained in the following sub-sections. 

 

4.1 The Outer Approximation algorithm 
 

In order to solve the proposed mathematical model in 

Section 3.2, we first use a commercial solver, AIMMS. Since 

the mathematical model is considered as a Mixed Integer Non 

Linear Problem (MINLP) model, we therefore use the AIMMS 

Outer Approximation algorithm (AOA) which solves an 

alternating sequence of Non Linear Programming (NLP) and 

Mixed Integer Programming (MIP) models (Hunting, 2011). 

The flow diagram for the AOA algorithm is given in 

Figure 1. The MINLP is first solved as a relaxed NLP and the 

linearization is then performed around the optimal solution. 

Next, the resulting linear constraints are added to the model.  

We refer the new linear model as the master MIP problem. 

Subsequently, the master MIP problem is solved and the 

integer part of the resulting solution is temporarily fixed. The 

fixed integer part is then translated back to the relaxed NLP. 

The linearization and integer fixing process is repeated until 

the termination condition (e.g. iteration limit) is met. The in-

built solvers that AIMMS used to solve the TOPVP are 

CONOPT 3.14V and CPLEX 12.6.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Outer Approximation algorithm (Hunting, 2011). 

4.2 Iterated Local Search 
  

The limitation of the first algorithm is the capability to 

solve large instances within short computation times. We then 

propose the second algorithm which is mainly based on ILS, 

as shown in Figure 2 (Chao et al. 1996a). In this sub-section, 

an overview of the algorithm structure will first be presented 

followed by more detailed elaboration of the different 

operators used in the algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Iterated Local Search. 

 

4.2.1 Overview of the Algorithm Structure 
 

In short, the proposed algorithm for TOPVP follows the 

basic principle of an iterated local search (ILS) method. The 

ILS is defined as a local search method that iteratively applies 

local search to perturbations of the current locally optimal 

solution (Stützle, 2006). The four basic requirements of the 

ILS are 1) an initial solution, 2) a perturbation guideline to 

deconstruct the locally optimal solution, 3) a local search to 

seek improvements in the solution and 4) an acceptance 

criterion to determine from which solution the local search is 

continued.  

Similar to Chao et al.’s (1996a) algorithm, the proposed 

ILS consists of an initialization, two improvement and two re-

initialization steps. The initialization step constructs the initial 

feasible solution. The two improvement steps represent the 

local search method, seeking possible improvements in the 

current solution. The two re-initialization steps perturb the 

locally optimal solution for the next iteration of improvement. 

The acceptance criterion used in ILS is based on an 

optimization algorithm called Record-to-Record Travel (RRT) 

(Dueck, 1993). 
The RRT is used in ILS to determine if a new 

configuration of the solution should be accepted. In the RRT, 



 

 

the best solution obtained thus far is set as the record. Any 

configuration found that is an improvement over record is set 

as the new record. The proposed ILS attempts to seek further 

improvement using the new configuration. In addition, a 

constant percentage of the record is set as the acceptance 

threshold called deviation. Whenever the algorithm fails to 

find a configuration that is an improvement, the best 

configuration that deteriorates the solution within the deviation 

will be chosen to be worked on. 

The sequence of events to be executed for ILS is as 

follows:  

 

Step 1 (Initialization Phase): An initial solution is constructed 

using the initialization process which is discussed in Section 

4.2.2. The objective value of the initial solution is set as the 

record while the deviation is set at 5% of the record.  

 

Step 2 (Improvement Phase): The improvement phase 

consists of two loops; the inner loop will be referred to as I 

loop while the outer loop will be referred to as K loop. In I loop, 

a local search for improvement is conducted. The local search 

is a sequence of operators consisting of two-point exchange, 

one-point movement followed by 2-opt. All operators would 

be discussed in Section 4.2.3. At the end of the sequence, if a 

solution with higher objective value is obtained, then record 

and deviation are updated. The local search is iterated until no 

exchanges or movement of vertices are performed, ending I 

loop.  

Note that it is possible for exchanges or movement that result 

in no improvement in objective value. In K loop, re-

initialization 1 (Section 4.2.4) is performed to perturb the 

solution obtained from I loop. The new solution will then be 

iterated through I loop again. Subsequent re-initialization 1 

perturbs the solution according to how many times re-

initialization 1 was performed. A global variable k is used to 

track the number of re-initialization 1 steps performed. The 

terminating condition for K loop is when no new record is 

achieved for 5 consecutive iterations.  
 
Step 3 (Re-initialization 2): Perform re-initialization 2 

(Section 4.2.4) using the last k value of Step 2. The deviation 

is also set to 2.5% of the current record.  

 

Step 4 (Improvement Phase 2): The 2nd improvement phase 

follows the same sequence of events as Step 2 (1st 

improvement phase) with the exception of the deviation used 

in RRT exchanges and movements.   

 

 

4.2.2 Initialization Phase 
 

In the initialization phase, we first remove nodes which 

cannot be theoretically visited given the time budget. Any 

vertex 𝑖 for which 2𝑡𝑖0+ 𝑟𝑖 > 𝑇 is removed. This is because the 

vehicles have to return to the depot and any vehicle that visits 

these nodes will always violate the time budget allocated. The 

remaining nodes are classified as feasible nodes.  

The next process is to construct |P| paths. The main idea 

is to assign as many nodes as possible without violating the 

time budget (Chao et al., 1996 and Archetti et al., 2007). Due 

to the discrete passes, it is required to decide between 

increasing the passes made on nodes currently in a particular 

path of interest or inserting an additional vertex that is not in 

that path. 

The |𝑃| paths with the highest profit collected constitute 

the solution and will be referred to as the set of paths 𝑃𝑇𝑂𝑃𝑉𝑃. 

Thus, the sum of the profit collected from each path in 𝑃𝑇𝑂𝑃𝑉𝑃 

is the objective value. The set of remaining paths will be 

referred to as 𝑃𝑁𝑇𝑂𝑃𝑉𝑃.   

 

4.2.3 Improvement Phase 
 

Using the initial solution generated in the initialization 

phase, we then improve the solution by performing three 

different operators of Iterated Local Search. 

 

Two-point exchange 

The objective of the two-point exchange is to seek possible 

improvement in the solution by exchanging nodes from the 

paths in 𝑃𝑇𝑂𝑃𝑉𝑃 with nodes from the paths in 𝑃𝑁𝑇𝑂𝑃𝑉𝑃.  

 

One-point movement 

One-point movement is the operator used after two-point 

exchange in the local search component. One-point movement 

attempts to improve the solution by relocating nodes from one 

path to another. In particular, every feasible node is checked 

for possible movement one at a time. The candidate node is 

inserted into the designated path using the cheapest insertion 

heuristic.  

 

2-opt 

The 2-opt technique is used to reduce the total edge cost 

incurred by the paths in 𝑃𝑇𝑂𝑃𝑉𝑃 and 𝑃𝑁𝑇𝑂𝑃𝑉𝑃. By doing so, there 

may be opportunities for more exchanges and movements in 

later iterations. There should be no improvement in the 

objective value due to 2-opt.  

 

Note that as mentioned earlier in the overview of the 

structure of our proposed algorithm, two parameters, record 

and deviation, are updated only after a sequence of two-point 

exchange, one-point movement and 2-opt is completed. If no 

new record is found after 5 consecutive iterations, then the 

terminating condition for the corresponding improvement 

phase has been achieved. Otherwise, the solution obtained will 

be perturbed using re-initialization 1. 

 



 

 

4.2.4 Re-initialization Phase 
 

Re-initialization 1 

To avoid being stuck in a local optimum, re-initialization 1 is 

used to prepare the solution for the next iteration of local 

search. In this phase, nodes with the lowest collected scores are 

removed from all paths in 𝑃𝑇𝑂𝑃𝑉𝑃. The number of nodes 

removed from each path is determined by a variable 𝑘. As the 

iteration count for the local search increases, the value of 𝑘 is 

increased. In other words, more vertices are removed from 

each path in 𝑃𝑇𝑂𝑃𝑉𝑃 in subsequent re-initialization 1 steps.   

 

Re-initialization 2 

In re-initialization 2, the nodes are removed differently from 

re-initialization 1. Instead of removing nodes with the lowest 

collected score, nodes with the smallest ratio of collected score 

to insertion cost are removed from each path in 𝑃𝑇𝑂𝑃𝑉𝑃. Note 

that throughout the TOPVP heuristic, re-initialization 2 will 

only be performed once.  

 

5. COMPUTATIONAL RESULTS 
 

Since there are no benchmark instances for the TOPVP, 

we adopt the same scheme proposed by Erdoğan and Laporte 

(2013) to generate benchmark OPVP instances using selected 

TSP test instances. Those instances are kroA100, kroB100, 

kroC100, kroA200 and kroB200 which are obtained from the 

TSPLIB. The OPVP test instances, generated from TSP test 

instances, are then used to generate the TOPVP test instances. 

This is done by taking the 1-vehicle OPVP and dividing the 

time budget by the number of vehicles/paths in TOPVP (Chao 

et al., 1996).   

In order to verify and justify the performance of ILS, we 

compare the results obtained by the AIMMS AOA and ILS for 

solving small benchmark instances. The parameters varied are 

number of nodes |N|, number of paths/vehicles |P| and time 

budget for each path T. Since the test instances from TSPLIB 

are in sets of 100 vertices (kroA100, kroB100 and kroC100) 

and 200 vertices (kroA200 and kroB200), solving for 

optimality using the entire set of benchmark instances will be 

beyond computational reach. As such, to reduce the size of the 

experiment, only the initial 15 vertices from each instance were 

used, and experiments for 5, 10 and 15 vertices were conducted. 

In addition, the number of paths |P|   tested for each test 

instance was 1, 2 and 3. 

Table 1 summarizes some results obtained. Due to limited 

space, we are not able to show the entire set of results. The 

gaps between ILS and AIMMS solutions for all instances range 

from 0% to 3.32%. As such, further experimentation to 

evaluate the TOPVP heuristic for larger test instances is a 

plausible notion. 

With regards to the time budget designated for each path, 

arbitrary values were picked for the verification and validation 

experiments. To illustrate, the edge costs calculated from the 

benchmark instances can range up to around 3000 time units. 

For experiments with only 5 nodes or 5000 time units allocated 

for each path, the optimality gap is likely to be 0%. This can 

be attributed to the elimination of nodes that require more than 

2500 time units when visiting from the start node. As such, the 

reduction in the number of nodes considered resulted in the 

TOPVP heuristic to more likely converge to the optimal 

solution. 

On the contrary, for larger experiments with more than 

7000 time units allocated, every node can be visited. In this 

case, the performance of ILS drops slightly, being able to 

achieve optimality in some experiments only. This is because 

for a given larger time budget, the paths in the solution will be 

longer and the maximum allowable passes made at each path 

will be higher. As observed, the computation times required for 

some larger instances have already exceeded 300000 seconds. 

Thus, setting larger time budget is likely to be beyond 

computational reach. 

We continue conducting experiments for the full range of 

nodes using the benchmark instances, kroA100, kroB100, 

kroC100, kroA200 and kroB200. Since AIMMS is unable to 

solve the problem optimally after 2 hours of computational 

time, we decide to relax the integer requirements of the 

decision variables and treat them as the upper bound values of 

the solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: KroA100 experimental results 



 

 

 

Instance |𝑷| |𝑽| 𝑻 AIMMS Obj Value ILS Obj Value Optimality Gap (%) AIMMS CPU Time (s) 

kroA100 1 5 5000 81.00 81.00 0.000 0.26 

 1 5 7500 173.07 169.13 2.277 150.84 

 1 10 5000 251.99 250.50 0.591 3.84 

 1 10 7500 294.19 293.07 0.381 13.66 

 1 15 5000 249.90 249.35 0.220 54.91 

 1 15 7500 334.64 330.11 1.354 592.26 

 2 5 9000 279.82 279.77 0.018 2.86 

 2 10 9000 541.10 538.50 0.481 796.95 

 2 15 9000 715.09 691.35 3.320 19634.19 

 3 5 9000 280.00 280.00 0.000 2.70 

 3 10 9000 553.80 553.17 0.114 2604.34 

 3 15 9000 788.15 779.49 1.099 346925.58 

 

Table 2: KroA100 and KroA200 experimental results 

 

Instance |𝑷| |𝑽| 𝑻 
AIMMS Relaxed 

Solution 
ILS Obj Value TOPVP CPU Time (s) 

Upper Bound-TOPVP 
Gap (%) 

kroA100 2 25 7020 889.06 736.49 0.66 23.24 

 2 50 7186 1842.05 1205.71 1.50 38.73 

 2 75 7240 2453.64 1372.54 1.75 49.82 

 2 100 7351 2873.86 1539.49 4.51 50.98 

 3 25 4680 914.01 667.23 0.86 29.99 

 3 50 4791 1486.12 967.35 1.12 42.14 

 3 75 4827 2060.14 1174.92 2.07 47.30 

 3 100 4901 2671.92 1318.98 2.17 58.43 

 4 25 3510 566.24 580.05 0.74 0.03 

 4 50 3593 1148.19 757.50 0.64 41.47 

 4 75 3620 1648.31 956.83 1.77 50.40 

 4 100 3673 2063.15 1083.80 2.64 53.83 

kroA200 2 125 7345 3332.03 1755.72 3.90 53.92 

 2 150 7380 3634.92 1914.66 7.17 57.49 

 2 175 7380 4133.91 2036.53 5.21 61.01 

 2 200 7380 4144.51 2111.68 8.94 60.62 

 3 125 4897 2864.98 1687.18 3.34 50.22 

 3 150 4920 3160.60 1722.68 4.77 55.39 

 3 175 4920 3927.29 1860.15 4.89 61.20 

 3 200 4920 3376.31 1917.95 4.97 59.64 

 4 125 3673 2422.35 1405.30 2.17 50.46 

 4 150 3690 2564.64 1498.14 2.94 50.01 

 4 175 3690 2778.86 1595.99 3.18 51.90 

 4 200 3690 3498.26 1630.20 3.70 53.40 



 

 

Some results for the kroA100 instance are presented in 

Table 1. The number of nodes were varied at 25, 50, 75 and 

100. The results for a larger instance, kroA200, are also 

presented in Table 2. Experiments were conducted for 2-path, 

3-path and 4-path TOPVPs.  

As observed from Table 2, ILS is able to obtain a 

solution using considerably small computation time, even for 

the large instances kroA200 and kroB200. The maximum 

computation time recorded was 11.95 seconds for 2-path 175 

nodes TOPVP using test instance kroB200.  

Although the gap between the solution obtained from 

ILS and the upper bound is large, it can be reasonably 

justified. Given the termination time being set at 7200 

seconds, AIMMS is unable to achieve the terminating 

condition for the AOA algorithm. Thus, the upper bounds as 

well as the solutions obtained from AIMMS are still relaxed 

and may not be feasible. Hence, the actual optimality gap is 

expected to be smaller than the gap reported in Table 2. 

ILS managed to produce near-optimal solution for a few 

of the experiments. More specifically, for kroA100 4-path as 

well as kroB100 3-path and 4-path, the gaps for the 

experiments using only 25 nodes are considerably small, 

ranging from 0.03% to 5.59%. The reason for this is twofold; 

1) the number of nodes is only 25 and 2) the time budgets 

allocated for the 3-path and 4-path experiments are relatively 

low. As such, the number of feasible nodes in the time budget 

constraint is small, enabling ILS to reach a near-optimal 

solution quickly.  

On the contrary, for experiments with more nodes, ILS 

is unable to achieve similar small gaps. By the same 

argument, the number of feasible nodes for ILS to consider 

is large which explains the much larger gap reported.  

 

6. CONCLUSION 
 

We introduce a variant of the Orienteering Problem, 

namely the Team Orienteering Problem with Variable Profit 

(TOPVP). In TOPVP, multiple paths are involved in 

collecting scores which are dependent on the time spent at 

the nodes. In this paper, the TOPVP is formulated as a Mixed 

Integer Non-Linear Programming mathematical model. We 

also developed an Iterated Local Search algorithm for 

solving the TOPVP. 

We then compare the results obtained from solving 

some modified benchmark instances by ILS with that 

obtained by the AIMMS Outer Approximation algorithm. 

The AOA is only able to solve small instances. For the small 

benchmark instances ranging up to 15 nodes, ILS is able to 

achieve optimality in several experiments using considerably 

short computation time. ILS is then applied to larger 

instances ranging up to 200 nodes. While the computation 

time for ILS is low, the gap between the ILS and the upper 

bound obtained from AIMMS after 2 hours is still 

considerably large. This could be due to the simplicity of the 

operators used in ILS. As such, the development of a more 

effective heuristic incorporating more advanced operators to 

achieve a smaller optimality gap is a possible direction of 

future research. Finally, we plan to implement the algorithm 

to solve some applications of the OP, such as the vehicle 

routing problem and the tourist trip design problem. 
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