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Abstract. Utility function has been prevalent expressing one consumer's preference representing consumer's 

demand. We assume that one product is composed of many characteristics. Based on this concept, the consumer 

will rank different products by a unique score toward each characteristic. According to the scores, each customer 

will get his own utilities corresponding to each product. As a result, the customer is willing to buy the most 

satisfying product, i.e., the product with the highest utility within one specific market. We establish the pure 

characteristic demand model for consumer's utility function. We then formulate a mathematical program with 

quadratic objective function and complementarity constraints as the inverse problem that minimizes the error of 

the utility measured function. By deriving the weights for the program, we can calculate the consumer's utility 

with the weights. We use the real vehicle data to prove the validity of the program. Then, we adopt the big data 

storage and analysis framework to handle the real vehicle data. Finally, our research indicates that the program 

with complementary constraints will help us find a set of more accurate parameters. The vehicle company may 

refer to this utility function to estimate customers’ willingness to purchase the designed vehicle type. 
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1. INTRODUCTION 
 

An inverse optimization program is about inferring the 

parameters for a forward optimization program. The easiest 

inverse optimization model is that for a linear forward 

optimization program minx{ cTx | Ax ≥ b } (Ahuja and Orlin 

2001). Given a desired target x∗, the inverse problem aims to 

solve for a vector c such that the optimal solution of the 

forward program coincides with x∗. This is equivalent to 

finding the pair (p,c) satisfying strong duality and dual 

feasibility, namely,  

, , T T * T T
p b = c x p A = c p 0  (1) 

The inverse problem can be formulated as minc ||c −ĉ||n 

subject to (1), where n = 1, 2, ∞ are commonly chosen, and ĉ 

is often set at an incumbent coefficient of the forward program. 

    In this work we consider on the forward problem--- 

consumer’s utility maximization problem:  

max
π

 {  ∑ 𝜋j (𝐱𝐣’𝛃 –  αPj  +  𝜉𝑗)𝑗 |   ∑ 𝜋j𝑗  = 1 }      (2) 

The coefficient (xj’β – αPj + ξj) ≡ u j is the utility for the 

consumer buying product j. πj is the probability of buying 

product j and is the decision variables in the forward problem. 

In the basic setting of inverse optimization, we observe πj* and 

look for a value of uj (which is closed to an incumbent û j) so 

that πj* is optimal. 

      We face at least two challenges to formulate the inverse 

optimization of this problem that is different from the basic 

form. 

(i) We do not observe πj* for every individual in the 

market. Instead, we observed the aggregated result, 

the market share of product j, Sj* = (1/N) Σiπij. N is 

the size of the collection of consumers in a market, 

and πij is individual i’s probability to buy product j. 
(ii) The coefficient uj we aim to solve for in the inverse 

optimization is believed to have an intrinsic structure 

depending on the observed vector of product 

characteristics xj and the price Pj. The objective 
function minu Σ j(uj - û j)2 can be replaced by the 

objective function min Σj (ξj)2 subject to a sufficient 

condition of (2). The coefficients we solve for will be 

𝛃, α, and 𝜉j. 

Furthermore, to accommodate the aggregated observation, the 

coefficients  𝛃  a n d  α  are rewritten as the consumer-

dependent coefficients 𝛃𝐢 and αi.  

 

1.1 Advances of the Inverse Optimization 
 

    The research on inverse optimization can be traced back 

to Berton and Toint (1992) on the inverse shortest path 

problems. Later on, the inverse optimization model and 

method for the forward linear program has been extended to 



 

 

 

integer programming (a comprehensive survey in Heuberger 

2004, Shafer 2009), mixed integer programming (Wang 2009), 

convex programming (Iyengar and Kang 2005, Zhang and Xu 

2010), and multiobjective linear optimization (Chan et al 2014). 

   The formulation of an inverse optimization, however, can 

be more general. In a recent work (Chan et al 2014), the desired 

target x∗ is not necessarily an optimal solution to the forward 

problem. This issue arises naturally when the observed x∗ 

renders the inverse problem infeasible. A generalization for a 

linear forward problem is achieved by replacing the strong 

duality pTb = cTx∗ with one of the following two alternatives: 

(i) cTx∗  = εrpTb and (ii) cTx∗ = pTb+εa. The variables εr and 

εa, which should be minimized in the inverse optimization, are 

interpreted as the relative duality gap and the absolute duality 

gap respectively.  

   Another important class of the inverse optimization is for 

the convex nonlinear forward problem. Three typical 

applications, as enumerated in Zhang and Xu (2010) are (i) 

quality control in production systems, (ii) portfolio 

optimization, and (iii) production capacity planning. Assuming 

a concave demand function F(x) with respect to the quality 

level x and a convex working-hours function g(x) with respect 

to x, the forward profit maximization with an upper bound in 

the total working hours for maintaining the quality level is 

generally formulated as  

  |    ,  .max D u    T T

x

c F(x) b g(x) x  

Given an optimal quality level that minimizes the total working 

hours and meets the required total profit, the inverse 

optimization problem is about pricing the unit cost b; in 

portfolio optimization, the proportions x to be allocated in each 

asset is obtained by solving the Markowitz’s quadratic 

constrained program  

 ,max   T T

x

μ x  |  x Σx ,  Ax b,  x 0 
2  

where µ  is the vector of expected return, Σ is the 

covariance matrix of return, and σ2 is an acceptable level of 

risk. Let the optimal solution be x∗ (an efficient portfolio), the 

inverse optimization seeks a value of μ that minimizes the 

weighted norm ||µ−�̅�||2W = (μ−�̅�)T W(µ−�̅�) with a positive 

definite matrix W and an expected return vector μ of the latest 

information such that the portfolio x∗ remains efficient; in 

capacity planning, the capacity of each workstation is often re-

distributed to optimize the performance of a particular metric. 

For n workstations, a cost minimization forward problem is of 

the form  

=1 =1

 ( ) = ,  ,   ,min

n n

i i i i i i
x i ii

c f x x b x u i
 

  
 
 

 

where ci is the average value of work-in-process with each job 

at station i, fi(xi) is the average numbers of jobs with respect to 

the capacity xi at station i, b is the total capacity, and ui is the 

rate of jobs arriving at station i. The inverse problem updates 

the total capacity b dynamically according to the previous 

distribution of capacity x̂𝑖 . Solving alternatively for the 

forward and inverse optimization is essentially the philosophy 

of just-in-time scheduling. 

 

1.2 MPEC 
 

   For the convex forward program, the Karush-Kuhn-Tucker 

(sufficient) optimal condition becomes critical in analyzing the 

properties and designing the solution techniques. The Karush-

Kuhn-Tucker condition consists of primal feasibility, dual 

feasibility, and complementarity slackness. Hence, some 

inverse optimization problems can be properly reformulated as 

the linear complementarity problems (without outer objective) 

and the mathematical program with complementarity 

constraints (with an outer objective). The general form of a 

mathematical program with complementarity constraints 

(MPCC, or MPEC, Luo et al. 1996) is as follows:  
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where yj ⟘ hj denotes the complementarity yjhj = 0 and IE, II, IC 

denotes the index sets. If gE, gI, and h are linear functions, the 

constraint set is named as the linear complementarity. The 

satisfiability problem 0 ≤ y ⟘ h(y) ≥ 0 itself is called the linear 

complementarity problem (LCP, Cottle et al. 2009). If y solves 

0 ≤ y ⟘ h(y) ≥ 0, y ≥ 0 also solves the affine variational 

inequality (Facchinei and Pang 2003)  

( ) ( ) 0, 0,T h   Φ y y Φ  

and the optimization problem  

( )min

subject to 0, ( ) 0.

T h

h  

y

y y

y y
 (4) 

If the complementarities in (3) are replaced by (4), the resulting 

formulation becomes a nonlinear bi-level program (Dempe 

2002), a class of the hierarchical programming. In the case 

where h(y) is the gradient of another function q(y), i.e., h(y) 
= q(y), problem (4) is equivalent to miny≥0 q(y). 

    
1.3 Prospective Applications of Inverse Optimization 

 

The inverse optimization has been studied in the 

parameter estimation for the earthquake data (Tarantola 2005), 

demand (Carr and Lovejoy 2000), auctions (Beil and Wein 



 

 

2003), finance (Bertsimas et al. 2012), consumers’ choice and 

firms’ pricing (Pang et al. 2015) and cancer therapy (Chan et 

al. 2014).  

   The scale of the input data of inverse optimization in the 

literature remains small and experimental. In this paper we 

construct the inverse optimization methods approach on the 

big-data storage, database, and query technology stack. For 

further explanation, an overview of a 4-layer Real-Time Big 

Data Analytics (RTBDA) technology stack proposed by David 

Smith is displayed in Figure 1 

 

Figure 1: David Smith’s 4-layer of RTBDA technology stack 

 

   The core technology in the data layer is about the storage 

techniques and the query processing. For examples, RDBMS,  

Hbase, and Impala are systems for structured data storage; 

Hadoop MapReduce is a software framework for unstructured 

vast amounts of data; and Spark is a cluster big-data computing 

framework that supports SQL, streaming processing, machine 

learning, graph, and R. The data can be obtained from data 

warehouse appliances, or it can be the streaming data from the 

sensors, real-time data center, and websites. The analytics layer 

involves data mart which updates from the data layer 

constantly and the development environment for model 

constructing. The integration layer is like a broker, a business 

rule engine, and sometimes an Application Programming 

Interface (API). The decision layer is the end-users 

applications. 

   This research is aims to further the analytical technology 

that belongs to the analytics and the integration layers as a 

basis for the efficient use of data in terms of robust forecasting 

and optimal decision making. I propose a Data-to-Value 

technology stack in the Figure 2. 

The inverse optimization layer is the main method we 

will design for the parameter estimation; the algorithm layer 

contains the development of the parallel programming and 

distributed algorithm to accommodate both the models of 

inverse and forward optimization; and the forward layer 

computes the decision variable and the forecast quantities.  

Figure 2: Data-to-Value technology stack. 

 

The data, analytics, and decision layer stays at the same 

position as in the Figure 1, and additional issues need to be 

addressed sequentially: specific columns of data to be obtained 

in the base layer, compatible developer’s environments where 

the optimization techniques perform, and the feedback to scale 

and quality of the data according to the inverse/forward 

optimization study. 

 

2. Utility Measurement with Inverse Optimization 
Modeling 

 

Following the description in Section 1, the inverse problem is 

to find the parameters αi and βi such that consumer i’ decision 

πij is reflected in an aggregated observation. Denote J the total 

numbers of products. The MPEC formulation for inverse 

optimization is as follows: 

(5) 

Since the observations on the choices of every individual 
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consumer are not directly made, we need the first constraint to 

relate the estimated πij  with the observed market share, Sj. ξ

j within the utility expression is interpreted as the only 

unobserved characteristic of product j. In the inverse 

optimization framework, we may view it as the product-wise 

ξ-tolerance to fit the structural utility with the reality. That is, 

uij − �̂�𝑖𝑗 = (𝐱𝐣
′�̂�𝑖 − �̂�𝑖𝑃𝑗 + 𝜉𝑗)- (𝐱𝐣

′�̂�𝑖 − �̂�𝑖𝑃𝑗) = 𝜉𝑗 

3. Measuring Consumer Utility in the Car Market  
 

The validation of the inverse optimization model (5) is 

done for a car market. We employ the open nonlinear 

programming (NLP) package for R and solve the small 

instance of the model (5) on one single machine. 

 

3.1 Car market description  
 

The sales data in the car market is from the UK 

government for transport statistics. The cars in the data 

registered for the first time by its generic model. The data is 

recorded annually from 2001 to 2015-Sep-30. Part of the data 

is shown in Figure 3. To obtain a better understanding of the 

car market, it is necessary to sum the sales for each brand in 

Figure 4. 

From the Figure 4, the top 10 best sellers with the sales 

for this car market are Ford (4,948,838), Vauxhall (4,148,409), 

Volkswagen (2,754,599), Peugeot (1,993,282), Renault 

(1,712,299), BMW (1,686,298), Toyota (1,578,508), AUDI 

(1,489,349), Nissan (1,443,920), Citroen (1,345,245). 

 

3.2 NLP package for R 
 

The R Rsolnp package includes several documents 

(functions) such as benchmark, benchmarkids, gosolnp, solnp, 

startpars. The Rsolnp package is the solver we used for this 

study. The solnp function is based on the method developed by 

Ye (1987) which solves the general nonlinear programming 

problem. The solver belongs to the class of indirect solvers and 

implements the augmented Lagrange multiplier method with 

an SQP interior algorithm. The main reason to select this 

function as our method is the high efficiency feature of the SQP 

algorithm for solving the nonlinear programming problems. 

 

3.3 Result on Single Machine 
 

The numbers of rows and columns for the data are 212 

and 23 respectively. Supposedly, there are 5 people in the car 

market. Therefore, the value for i is 1,…,5 and the value for j 

is 1,…212. The dimension of βi is 23, which is the number of 

the vehicle characteristics. The results for ξj, πij, βi, αi, and γi 

shows in Figure 5, Figure 6, Table 1, Table 2, and Table 3 

respectively. 

 

4. ON-GOING WORK 
 

An algorithm that solves the inverse optimization for a 

larger scale of problems on a cluster of machines is under 

construction. 
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Figure 3: The vehicle sales data 

 
 



 

 

 

Table 1: The values of βi 

 
Figure 4: Total sales for each brand 

 

 



 

 

 

Figure 5: The values of ξj 

 



 

 

 

Figure 6: The values of πij 

 

Table 2: The value of αi 

 

Table 3: The value of γi 

 


