
 

 

Data Clustering with Principle Component for the Complete 

Must-Link Constraints 
Chao-Lung Yang* 

Department of Industrial Management 

National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C 

Tel: (+886) 2-2733-3141 ext. 3621, Email: clyang@mail.ntust.edu.tw 

 

Nguyen Thi Phuong Quyen 

Department of Industrial Management 

National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C 

Tel: (+886) 2-2733-3141 ext. 7111, Email: quyen.ntp@gmail.com 

 

Maisyatus Suadaa Irfana 

Department of Industrial Management 

National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C 

Tel: (+886) 2-2733-3141 ext. 7111, Email: Fanamoet@gmail.com 

 

 

Abstract. This research aims to develop an integrated method to solve a special constrained clustering problem 

constructed by Complete Must-Link (CML) constraints. Constrained clustering analysis is a semi-supervised 

learning to accommodate the information while it is available, to improve efficiency and purity of clustering. The 

CML clustering problem can be considered as aggregating pre-defined data groups. Through the transitive closure 

process of data aggregation, the data in each group are replaced by their centroid for clustering analysis. This 

causes information missing issue which means the data distribution or shape of the original groups are omitted, 

especially when the groups are intersected each other. In this research, a new method named CML-PCA is 

proposed for CML constrained clustering problem. The principal component analysis (PCA) which provides the 

supplemental information describing original partition blocks is suggested to be included in the distance matrix 

of the constrained clustering algorithm if they are intersected each other. The intersected ratio is invented to 
determine whether CML data partitions are intersected or not. The proposed algorithm is tested by using the 

simulated dataset and real-world data sets. From the experimental result, the proposed CML-PCA outperforms 

the traditional agglomerative clustering method when multiple validation indices were compared  
 

Keywords: maximum five keywords should be included  

 

 

1. INTRODUCTION 
 

In recent years, the semi-supervised clustering method 

emerges and attracts a lot of attention from the data mining 

community. In contrast to traditional (unsupervised) clustering, 

the semi-supervised clustering conducts the clustering process 

under the guidance of some supervisory information to 

improve efficiency and purity of clustering (Zhao et al., 2012; 

Jiang et al., 2013). The supervisory information can be 

represented by two kinds of instance constraints: Must-Link 

(ML) constraint and Cannot-Link (CL) constraint (Wagstaff 

and Cardie, 2000; Wagstaff et al., 2001). Essentially, a ML 

constraint specifies that two instances must be placed in the 

same cluster while a CL constraint enforces that two instances 

should not be placed in the same cluster. ML and CL 

constraints can be formed by the pre-determined information 

relieved in the collected dataset or by the expert in the domain.  

In addition, the constrained ML data instances might 

possess the prior information such as the known member 

groupings or associations between data in order to construct 

group-level constraints. The pre-existing knowledge can 

capture larger building blocks of instances in the dataset D to 

form the group-level constraints. The group-level constraint 

can be treated as the union of some ML constraints based on 

the transitive and combinable characteristics of the ML 

constraint. For instance, two ML constraint {𝑥1, 𝑥2}  and 

{𝑥2, 𝑥3} implies that an ML constraint  {𝑥1, 𝑥3}  exists and 

they can be combined into a group-level constraint  
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{𝑥1, 𝑥2, 𝑥3} (Johnson and Wichern, 2002).  

Prior information such as known member groupings or 

associations between the data instances might be available to 

construct group-level constraints. For example, the 

nationalities or departments of participants are usually 

considered as the group-level constraints, if participants from 

the same country or department should be grouped together. Or, 

the products manufactured at the same batch need to be 

clustered together. This kind of data feature can provide a 

complete set of must-link constraints in which each data 

instance has at least one must-link constraint with another data 

instance. In other words, it is a special case of a constrained 

clustering problem in which the r pre-existing partitions 

(M1,…,Mr) among n items is provided. Each data instance xi in 

the dataset D must belong to one of M1,…, Mr partitions 

exclusively where i= 1,…, n, n is totaling number of data 

instances and r is the number of pre-existing partitions or 

groups. If the clustering is performed upon those pre-

determined partitions with r≫k (k is the number of clusters) 

and no CL constraint is involved, in this research, we named 

this particular restriction as complete must-link (CML) 

constraints for clustering. 

Essentially, CML constrained clustering can be 

considered as aggregating pre-defined groups to fewer number 

of clusters. Through the transitive closure construction which 

combines multiple pair-wise ML in a pre-defined group, each 

data instance will be associated with other data instances in the 

pre-defined group. For example, if A must link with B, and B 

must link with C, it will lead to A, B, and C must link with each 

other and form a pre-defined group contains A, B and C. This 

transitive closure construction in the constrained clustering 

methods such as constrained K-means or hierarchical 

clustering in fact use the centroid of a pre-defined group to 

represent data instances in that group. Therefore, the CML 

constrained clustering problem can be simplified as data 

clustering upon centroid of pre-defined groups 

Existing methods for constrained clustering can be 

divided in two groups: constraint-based approach and distance-

based approach. For both constraint-based approaches and 

distance-based approaches, the transitive closure construction 

in fact uses the centroid of a pre-defined group to represent 

data instances in that group. Therefore, the constrained 

clustering problem can be simplified as data clustering upon 

centroid of pre-defined groups. Although the computational 

performance of constrained clustering algorithms is promising, 

the existing drawback of using centroid is the information 

missing of the original dataset. Because all data points in a pre-

defined group are represented by a single centroid, the 

information such as distribution or shape of original member 

will be neglected. This information loss, in fact, affects the 

clustering result when dealing with ML constraints. These 

affects are more significant especially when pre-defined 

groups contain the intersection instances with high density.   

Figure 1 uses an example to illustrate this information 

missing issue. There are three partitions: Group 1, Group 2, 

and Group 3 intersect each other. These three partitions can be 

treated as pre-assigned groups constructed by CML constraints. 

The centers of Group 1, Group 2, and Group 3 are denoted by 

triangle, square, and circle symbols, respectively. When 

performing clustering on these three pre-assigned partitions 

(extremely simple case), centers of the groups will be 

represented the partitions based on transitive closure 

construction. Only considering the group centroid in 

performing clustering, group 1 and group 2 should be clustered 

together based on the location of centroid. However, from 

different perspective of clustering, such as considering the 

shape of data distribution, it seems group 1 and group 3 are 

more likely to be placed in the same cluster. Obviously, the 

existing clustering algorithm is not able to cluster three groups 

based on the distribution perspective under ML constraints, 

because the existing methods use the centroid of partition data 

to represent data points in the original group. This centroid 

representation will mislead the clustering result especially 

when the pre-defined groups are mixed together. Therefore, it 

is necessary to consider the information missing issue of the 

mixing dataset 

 

 

Figure 1: An illustration of intersection groups  

 

This research proposes a method to deal with the 

constrained clustering problem. To avoid the information 

missing issue due to using only centroid in the existing 

methods for constrained clustering, the new method considers 

integrating the principal component analysis (PCA) in 

clustering procedure. The principal component analysis (PCA) 

which provides the supplemental information describing 

original groups is suggested to be added in the distance matrix 

of the constrained clustering algorithm. The research objective 

of this work is to develop an innovative clustering method 

which can combine PCA information to provide a better 

clustering result when pre-defined CML groups are mixed.  



 

 

The rest of this paper is organized as follows. Section 2 

provides the literature review about two most prevail 

constrained clustering methods: constrained K-means and 

agglomerative hierarchical clustering algorithms. Section 3 

describes the proposed method– PCA-based CML constrained 

clustering. In section 4, the experimental results by applying 

proposed PCA-based CML clustering methods on a variety of 

datasets are shown. Finally, section 5 concludes this research 

and addresses the future research direction. 

 

2. LITERATURE REVIEW 
 

The instance-level ML and CL constraints have been 

integrated with traditional clustering algorithms, both on 

partitioned and hierarchical methods (Jain et al., 1999; Jain, 

2010). Most of these existing semi-supervised clustering 

algorithms are designed for partitioned clustering methods and 

few research efforts have been reported on semi-supervised 

hierarchical clustering methods (Xing et al., 2002). Different 

from partitioned clustering where the clustering results can be 

easily represented using vectors, clustering indicators, or 

connectivity matrices for optimization, the results of 

hierarchical clustering are more complex and typically 

represented as dendrogram or trees. In Table 1, the input, 

output, complexity of algorithm, and advantage/disadvantage 

of traditional and constrained clustering algorithms are 

compared. Here, two prevailing algorithms: K-means and 

agglomerative hierarchical are investigated separately because 

of their fundamental differences. Note that all algorithms are 

compared based on handling CML constraints problem which 

is our interest in this research. 

As can be seen, K-means algorithm has less time and 

space complexity than agglomerative hierarchical algorithm 

no matter in traditional or constrained versions. That is the 

main reason of K-means’ popularity. However, K-means is 

sensitive to initial cluster selection and it only converges to 

local minimum. Therefore, it usually needs to restart several 

times for choosing the smallest value of the error. On the other 

hand, agglomerative hierarchical algorithm has more versatile 

because it allows determining the number of clusters later 

based on the generated dendrogram. It makes sense that this 

nature of hierarchical algorithm costs more complexity.   

The efficiency of both constrained K-means (Wagstaff et 

al., 2001) and constrained hierarchical algorithms (Davidson 

and Ravi, 2005) can be significantly enhanced when CML 

constraints are provided. However, the CML datasets 

considered as pre-determined partitions of data are usually 

intersected in many real-world cases. How to deal with the 

intersection among CML groups is unknown. In addition, only 

using the centroids to represent original CML partitions and 

performing clustering on them may not be very effective due 

to the information missing issue mentioned in the first section. 

 

Table 1: Comparison of clustering algorithms: K-means and agglomerative hierarchical. (Yang, 2009) 

 

 K-means Agglomerative Hierarchical 

Algorithm Traditional version 
Constrained version 

(with CML constraints) 
Traditional version 

Constrained version 

(with CML 

constraints) 

Input 

Number of clusters (k), 

Distance matrix (n×n) 

Number of clusters (k) 

Distance matrix of pre-

determined groups (r×r) 

Distance matrix, size is 

(n×n) 

Distance matrix of pre-

determined groups 

(r×r) 

Output 

k clusters k clusters Dendrogram with all 

data points 

Dendrogram with r 

centroid of connected 

components 

Time 

Complexity 
O(knl) O(krl) O(n2log n) O(r2log r) 

Space 

Complexity 
O(k+n) 

O(k+r) 

If k <= r 
O(n2) O(r2) 

Advantages 

Simple and ubiquitous  ML constraints can 

improve efficiency 

Consistency of clustering 

result 

Choose appropriate k 

later by dendrogram 

ML constraints can 

improve efficiency 

Disadvantages 

Decide k in advance 

Sensitive to initial 

selection 

Converge to local 

minimum 

Detailed information of 

original data is ignored 

More time and space 

complexity 

Detailed information of 

original data is ignored  

r: # of connected components; k: # of clusters; n: # of instances; l: # of iterations 



 

 

3. METHODOLOGY 
 

 This research considers the CML constrained 

clustering for intersected data problem. In order to deal with 

the information missing issue, the proposed algorithm called 

CML-PCA utilizes principal component loadings as the 

supplementary information to describe the pre-determined 

data groups constructed by CML constraints. Figure 2 

illustrates the procedures of PCA-CML clustering algorithm. 

First, the CML constraints dataset is firstly applied the 

agglomerative clustering method to produce a dendrogram 

First, by the transitive closure construction, the partition 

blocks can be constructed in CML distance matrix. Then, the 

centroid of each partition block is calculated to form a 

centroid set based on the constrained clustering method. 

Dendrogram is generated based on the distance matrix 

constructed by centroid of each CML partition. Then, the 

intersected ratio which is invented in this research to measure 

the intersection of clusters constructed by CML groups is 

calculated. Starting from the top of dendrogram, if the CML 

groups intersect each other, the PCA loadings of the 

intersected CML groups are added in the distance matrix for 

extra clustering process. Based on this new distance matrix, 

the clustering is re-performed. If the CML groups do not 

intersect, the algorithm keeps searching down to the next 

level of the branch of dendrogram. The recursive process 

containing intersected ratio calculation and new distance 

matrix generation, and splitting process is repeated. 

In this research, two PCs with the largest eigenvalues 

are selected as auxiliary components to supplement data 

coordination information in the intersected CML groups. The 

intersected ratio is then recursively calculated through the 

agglomerative clustering process to check if the clustering 

results under the certain branch of a dendrogram are 

intersected. The next sub-section will show the detailed 

information about how to calculate the intersected ratio of 

clustering result. 

Figure 2: The proposed PCA-CML method 
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3.1 Intersected Ratio 
 

In this research, intersected ratio (α) was purposed to 

determine if the CML groups based on the original data are 

intersected each other. Basically, the sum of square error 

(SSE) of a data cluster is used to specify the dispersion of a 

cluster. Larger SSE is, more dispersive the cluster is. The 

following subsection describes the definition of intersected 

ratio by using SSE and an example of calculation is 

addressed. Table 2 lists the notation used for intersected ratio 

calculation. 

Table 2: Notation of intersected ratio 

Symbol Description 

𝛼 Intersected ratio 

𝑥 Data object 

𝐶𝑀𝐿𝑖 The ith 𝐶𝑀𝐿 partition 

𝒄𝒊 The centroid of 𝐶𝑀𝐿𝑖 partition 

𝐺 

A set of 𝐶𝑀𝐿 partitions which are clustered 

together. Multiple 𝐶𝑀𝐿   partitions can be 

included in 𝑮 

𝐶𝑀𝐿𝐺 The SSE of 𝐶𝑀𝐿group with 𝐺 components 

𝑐𝐺 The centroid of 𝐶𝑀𝐿𝐺 group 

 

Through agglomerative clustering process upon CML 

constraints, multiple CML partitions can be clustered 

together. For a generated cluster with multiple CML 

partitions, the intersected ratio (α) which is the ratio of the 

summation of SSE of individual CML partitions in a cluster 

and the SSE of a cluster containing data points from all CML 

partitions, is proposed to measure the dispersion of the data 

cluster. The equation of intersected ratio is defined as 

Equation (2). The upper bond of the intersected ratio (α) is 1 

which means the CML partitions are completely intersected 

when the partitions are exactly the same. If intersected ratio 

is larger, it means that CMLs partitions of the cluster are 

more intersected each other. 

 

     

(1) 

 

 

Figure 3 and Figure 4 illustrate two scenarios of 

intersected ratio calculation: intersected data and non-

intersected data. As can been seen in Figure 3, there are 4 

CML partitions specified by different colors that are 

intersected each other. The color circle indicates the range of 

a particular data distribution. Obviously, these four CML 

partitions have different dispersion. The intersected ratio is 

calculated at 0.9981 can be used to indicate the level of 

intersection is large in this case. Another case in Figure 4 

shows 4 CML partitions which are far away from each other. 

The intersected ratio of this case is at 0.0233. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Illustration of intersected data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Illustration of non-intersected data 

The two cases in Figure 3 and Figure 4 in fact 

demonstrate two extreme cases of the dispersion of CML 

partitions. By using the proposed intersected ratio, we can 

easily identify if the concerned CML partitions are 

intersected or not. To determine if CML partitions of a cluster 

are intersected or not, the threshold called α’ need to be 

specified. If the intersected ration of the concerned CML 

partitions is larger than the threshold (α≥α’), the PCA 

loadings will be added in the clustering process to 

differentiate the intersected CML partitions. In this research, 

we set the threshold α'=0.5 to determine if CML partitions of 

a cluster are intersected because the 0.5 mean the middle 

level of intersected in CML data sets. 

 

3.2 Principal Component Loadings  
 

PCA is a multivariate mathematical technique to 

extract the most representative information among multiple 

data features. PCA method is commonly used in data 

dimension reduction and interpretation (Johnson and 

Wichern, 2002). According to Peres-Neto et al. (2005) the 

two non-trivial PCs are selected to integrate to the original 



 

 

distance matrix in order to provide the supplementary 

information. The supplementary information about the 

partition blocks is added in the new distance matrix (or 

similarity matrix) for the intersected groups to alleviate the 

information missing issue caused by centroid replacement.  

The PCA loadings are computed by using data points in 

the concerned CML partitions. The PCs are calculated based 

on the original data (Jolliffe, 2002). The new 

distance/similarity matrix is constructed based on the 

combined centroid feature set which includes the original 

centroid set and adding features. 

 m’ = [m, s]   (2) 

m: original similarity matrix 

m’: new similarity matrix 

s: supplementary feature (as a matrix) 

To describe the dispersion characteristics of each 

intersected data partition, the eigenvectors of each 

intersection data partition are computed by PCA method. The 

number of the adding features (loadings of the first two 

eigenvectors) is equal to the number of features due to the 

nature of PCA.  

 

4. EXPERIMENT 
 

The experiment is conducted to test the performance of 

the proposed CML-PCA on both the simulated datasets and 

real world data sets. The simulated dataset was generated by 

random number generator to evaluate the performance under 

the intersected CML partitions. The real world dataset 

consists of the yeast retrieved from UCI machine learning 

repository (http://archive.ics.uci.edu/ml/) and cartridge 

datasets which is the data about color printing quality 

measurement.  

In this research, we used R language to implement the 

algorithm because the software has many predefined 

functions available. Another reason of using R is because it 

is an open source and modular software package supported 

by many communities. The intersected ratio 0.5 is chosen as 

the threshold in our experiment, because the 0.5 mean the 

middle level of intersection in CML groups. 

To evaluate the efficiency of the proposed method, a set 

of validation indices which contain 8 widely used internal 

validation measures (Liu et al., 2012) is considered in this 

research. The Calinski_Harabasz index meausres the cluster 

validity based on the average between- and within-cluster 

sum of squares. The Davies-Bouldin index is calculated by 

averaging all the cluster similarities. The Dunn’s index 

measures the minimum pairwise distance between objects in 

different clusters and the maximum diameter among all 

clusters. The SD index considers the concepts of the average 

scattering and the total separation of clusters. The index 

S_Dbw takes density into account to measure the inter-

cluster separation. The Silhouette index counts the clustering 

performance based on the pairwise difference of between- 

and within-cluster distances. The index Xie-Beni considers 

the minimum square distance between cluster centers and the 

mean square distance between each data object and its cluster 

center. The proposed CML-PCA result is compared to the 

original clustering result which is constructed based on the 

agglomerative clustering process. The experimental results 

are shown in the next sections.  

 

4.1 Simulated Data Experiment 
 

The simulated data set consists of 10 CMLs which 

intersect with each other. Each CML partition has 100 data 

points. The data is generated randomly with the specified 

mean and standard deviation based on normal distribution. 

Figure 5 illustrates the simulated data. Obviously, the CML 

partitions in this data set are intersected. If performing the 

traditional hierarchical clustering method with group-level 

constrains, the algorithm, in fact, clusters the centroids of 

CML partitions. It means the dispersion of CML partitions 

will not be considered. If clustering this data set by the 

proposed CML-PCA algorithm, we expect the clustering 

result will not only consider the centroids of the CML 

partitions but also the dispersion of them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Illustration of intersected simulated data 

 

The detailed process of the proposed CML-PCA is 

addressed. First, the original clustering result (dendrogram) 

is constructed based on the agglomerative clustering process. 

Then, the re-clustering process is performed on the whole 

dendrogram. If the intersected ratio of the dendrogram is 

smaller than α’ = 0.5 (non- intersected), we need to split the 

dendrogram into two parts based on the highest distance 

(height). In contrary, when the intersected ratio is higher than 

the threshold which means the data set on the dendrogram 

branch are intersected, we need to add PCA vectors to the 

distance matrix and re-cluster it based on CML-PCA method. 

The computational result for the simulated data showed that 



 

 

the intersected ratio is 0.86 that exceeds the threshold. 

Therefore, PCA vector is added to the distance matrix of the 

root of clustering dendrogram. After including the PCA 

loading, the clustering result is able to consider their PCA 

loadings to perform clustering by not only their centroid 

distance but also the data distribution of each CML partition.  

Figure 6 shows the comparison of the intersected 

dataset result with and without adding PCA. As can be seen 

on the left chart, the CML partition #2 is clustered in the 

different group against #4 and #7. After considering adding 

PCA loadings, the proposed CML-PCA clusters CML #2 

together with CML #4 first and then with CML #7. This 

clustering result is consistent with the expectation because 

CML #2, #4, and #7 have very similar dispersion. 

 

 Figure 6: A comparison of clustering results on the simulated dataset with and without adding PCA loading

The comparison of the validation indices are shown in 

Table 3. Obviously, the proposed CML-PCA outperforms the 

existing agglomerative clustering method. 

Table 3: Comparison of validation indices on simulated data 

Index 
CML without 

PCA 

CML-

PCA 
Rule 

Calinski-Harabasz 25.590 57.771 max 
Davies-Bouldin 20.962 6.7127 min 
Dunn 0.002 0.003 max 
SD-scat 0.986 0.918 min 
SD-dis 4.272 20.439 max 
S-Dbw 4.272 4.054 min 
Silhouette -0.007 -0.001 max 
Xie-Beni 484586 362159 min 

 

4.2 UCI data sets 
 
4.2.1 Yeast Dataset 

Yeast dataset contains data related to the localization site 

of yeast protein. The data have 1484 instances with 9 attributes. 

The class distribution is the localization site which is used as a 

group-level constrains to form CML partitions. The data set 

consists of 14 CML partitions. The intersected ratio shows that 

all yeast data intersect each other (α = 0.97). Therefore, we 

need to integrate the PCA loading in the distance matrix. Table 

4 compares the clustering results with and without adding PCA. 

 

4.2.2 Cartridge Dataset 

Cartridge dataset contains the sensor information used for 

the calibration process of a color laser printer. The dataset 

contains three kinds of data: 1) sensor information during the 

calibration, 2) print-out measurements right after the 

calibration, and 3) cartridge information. The objective of 

collecting this dataset is to investigate factors which affect 

color printing and develop a new sensor mapping model to 

calibrate the printer. Similar to the experiments of the 

simulated and Yeast dataset, the PCA loading is added in the 

distance matrix when the intersected ratio exceeds the 

threshold. 

The result of performing 8 validation indices on 

clustering result on the cartridge dataset is shown in Table 5. 

Once again, the proposed CML-PCA achieves significantly 

better performance than the original agglomerative clustering 

result. 

 

Table 4: Comparison of validation indices on Yeast dataset 

Index CML 

without PCA 

CML-

PCA 
Rule 

Calinski-Harabasz 57.792 121.112 max 
Davies-Bouldin 1.835 1.943 min 
Dunn 0.010 0.012 max 
SD-scat 1.809 0.897 min 
SD-dis 8.944 13.728 max 
S-Dbw 4.327 3.638 min 
Silhouette 0.038 0.072 max 
Xie-Beni 372.35 328.89 min 



 

 

Table 5: Comparison of validation indices on Catridge dataset 

Index CM- 

without PCA 

CML-

PCA 
Rule 

Calinski-Harabasz 243 825 max 
Davies-Bouldin 0.8340 0.8826 min 
Dunn 0.0011 0.0041 max 
SD-scat 0.4200 0.2193 min 
SD-dis 0.5956 0.7797 max 
S-Dbw 3.4936 0.2541 min 
Silhouette 0.1880 0.4683 max 
Xie-Beni 390325 306824 min 

 

In the cartridge data set, the CML-PCA method was 

performed to demonstrate the promising performance on the 

semi-intersected data distribution. When the CML groups 

intersect each other, CML-PCA method is able to consider the 

dispersion by adding PCA loading to cluster the CML 

partitions by their data distribution. The CML-PCA method is 

particularly useful when pre-determined data groups are 

intersected with each other 

 

5. CONCLUSION 
 

In this research, a new constrained clustering method 

called CML-PCA is proposed to deal with CML constraints 

which are group-level constraints by pre-determined factors or 

background knowledge. The proposed CML-PCA designs and 

implements the innovative algorithm to integrate PCA loadings 

of CML partitions in the distance matrix for clustering. This 

new distance matrix can consider the cluster data not only by 

centroid distance but also by the data dispersion which is 

important when data pre-partitions are intersected. 

Additionally, the intersected ratio is also defined in this 

research to measure the degree of the data intersection. The 

reason of utilizing intersected ratio is to evaluate the level of 

intersection among data partitions. 

The experimental results are performed in simulated 

dataset and UCI datasets. The set including 8 widely used 

validation indices are used to compare the performance of the 

CML-PCA and traditional constrained clustering algorithm. 

Based on experimental result, the CML-PCA is significantly 

better than the traditional method. Particularly for cartridge 

dataset, the new clustering result performed by the CML-PCA 

shows the sensor partitions can be grouped not only by the 

centroids but also by the dispersion of data group 

characteristics. This result is useful for evaluating cartridge 

quality in the practical application. For future research, the 

proposed algorithm should be tested on dataset with higher 

dimensions or Big Data application. Especially, when the data 

partitions are highly intersected in the high dimension, 

exploring or clustering the data structures under certain 

knowledge about the data plays the important roles on data 

mining application. 
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