Supply Chain Planning with Cross-echelon Reverse Logistics Using Data Envelopment Analysis and Particle Swarm Optimization

Z.H. Che †

Department of Industrial Engineering & Management National Taipei University of Technology (Taipei Tech), Taipei, Taiwan Tel: (+886) 2- 2771-2171 ext. 2346, Email: <u>zhche@ntut.edu.tw</u>

K.H. Hsiao

Department of Industrial Engineering & Management National Taipei University of Technology (Taipei Tech), Taipei, Taiwan Tel: (+886) 2- 2771-2171 ext. 2351

J.Y. Chang

Department of Industrial Engineering & Management National Taipei University of Technology (Taipei Tech), Taipei, Taiwan Tel: (+886) 2- 2771-2171 ext. 2351

C.L. Chen

Department of Industrial Engineering & Management National Taipei University of Technology (Taipei Tech), Taipei, Taiwan Tel: (+886) 2- 2771-2171 ext. 2351

Abstract. This paper addresses the problems associated with the partner selection and distribution planning in the supply chain system with cross-echelon reverse logistics. We introduce an optimization mathematical model for multi-echelon, multi-product and multi-period system based on manufacturing loss, transportation loss, and resource limitation constraints. Furthermore, a solving methodology applying data envelopment analysis (DEA) and particle swarm optimization (PSO) based on mathematical model is developed. The DEA is used to evaluate the performance of existing partners and select some important partners. A PSO approach is proposed to select kernel partners and allocate the distribution quantity between the kernel partners. Finally, a cross-echelon reverse supply chain framework with 4 echelons, 2 products and 3 periods is used to demonstrate the suitability of this proposed methodology.

Keywords: supply chain planning, cross-echelon reverse logistics, partner selection, data envelopment analysis, particle swarm optimization

1. INTRODUCTION

Fleischmann et al. (1997) described reverse logistics as all activities or approaches, when products are returned from users to manufacturers and then sold again in the market. Trebilcock (2001) and Cohen (1988) pointed out that remanufacturing mode could save 40%~60% in production costs every year. Some experts applied reverse logistics to many fields, such as the steel industry (Spengler et al., 1997), carpet recycling (Ammons et al., 1997), electronic equipment (Jayaraman et al., 1999), sand recycling (Barros et al., 1998), and reusable packing materials (Kroon et al. 1995). In addition, Sheu et al. (2005) attempted to address integrated logistics through a linear multi-target planning model, and suggested a product return and subsidy policy for enterprises. Min et al. (2006) analyzed the reverse logistics planning issue as to how the customers could return products purchased over the Internet to the suppliers, and applied heuristic algorithm to solve the nonlinear mixed integer programming for the purpose of cost minimization. Evans et al. (2007) established a forward and reverse supply chain network based on third-party logistics, and applied a mixed-integer nonlinear planning model to dynamically integrate the distribution network, while considering factors such as multiple products, multiple echelons and capacity constraints. Finally, they endeavored to solve optimized forward and reverse networks with heuristic algorithm.

Hence, this paper discusses the selection of crossechelon supply chain partners and distribution planning, in order that defective products could be sent back from downstream supply chain partners to upstream partners for reprocessing purposes based on the degree of damage. Gen and Cheng (1997) pointed out that, cross-echelon logistics could be deemed as a knapsack problem (i.e. NP-Hard problem) containing capacity constraint, position, and quantity allocation. This problem will become more complex since capacity constraints, transportation losses, and manufacturing losses are considered in this research.

This paper presents a DEA is used to evaluate the business performance of supply chain partners and an optimal mathematical model for supply chain partners selection and distribution planning in cross-echelon reverse logistics services with considering manufacturing loss, transportation loss, and resource constraints. In addition, a PSO is employed to solve the optimal mathematical model for finding a cross-echelon reverse logistics plan.

2. PROPOSED METHODOLOGY

2.1 DEA Model

- u_r, v_i Weight of *r* -th output and *i* -th input
- X_{ik} Performance of k -th supply chain partner under i -th input criterion
- Y_{rj} Performance of *j*-th supply chain partner under *r*-th output criterion
- *n* Number of evaluated units
- *m* Number of input factors
- *s* Number of outputs

s

 ε A minimal positive value

The CCR-I (Charnes, 1978) model is used to obtain the business performance of supply chain partners in different echelons, with CCR-I model shown below:

$$Max \qquad hk = \frac{\sum_{\substack{r=1\\m}} u_r Y_{rk}}{\sum_{\substack{i=1\\i=1\\k}} v_i X_{ik}}$$
(1)

$$\sum_{\substack{r=1\\ m \\ i=1}}^{s} u_r Y_{rj} \le 1, \ j = 1, \dots, n$$
(2)

$$u_r, v_i \ge \varepsilon > 0, \quad r = 1, ..., S, \quad i = 1, ..., m$$
 (3)

Symbols for maximum performance model and minimum cost and time model:

minimum cost	and time model:
р	Period index
i	Echelon index of network
ri	Echelon index of cross-echelon reverse
	network
g	Product items
<i>m</i> , <i>n</i>	Partner index
$Min CP_{i,m}^{g}$	Minimum production capacity of partner m
	for product g at echelon I
$MaxCP_{i,m}^{g}$	Maximum production capacity of partner m
	for product g at echelon I
$SC_{i.m}$	Efficiency of partner <i>m</i> at echelon <i>i</i>
$PD_{i.m}$	Defect ratio of partner <i>m</i> at echelon <i>i</i>
$TFD_{((i.m),(i+1.n))}$	Transportation loss from partner m at echelon
((<i>i.m</i>);(<i>i</i> +1. <i>n</i>))	<i>i</i> to partner <i>n</i> at echelon $i+1$
$SPC_{i.m}$	Production cost of partner <i>m</i> at echelon <i>i</i>
$STC_{((i.m),(i+1.n))}$	Transportation cost from partner m at echelon
((),((+1))	<i>i</i> to partner <i>n</i> at echelon $i+1$
$X_{((i.m),(i+1.n))}^{p.g}$	Transportation quantity from partner m at
Λ ((<i>i.m</i>),(<i>i</i> +1. <i>n</i>))	echelon <i>i</i> to partner <i>n</i> at echelon $i+1$ for
	product g in period p
$PX_{i.m}^{p.g}$	Production quantity of partner m at echelon i
1.m	for product g in period p
$\mathbf{R}\mathbf{Y}^{p.g}$	Quantity of defective products returned from
$RX^{p.g}_{((i.m),(i-ri.n))}$	partner m at echelon i to partner n at echelon
	<i>i-ri</i> for product g in period p
$MD_m^{p.g}$	Customer demands of partner m for product g
<i>m</i>	in period p
$UMD_i^{p.g}$	Supply quantity at echelon i for product g
	in period p
$SQ_{i,m}$	Product quality of partner m at echelon i
$S\mathcal{L}_{((i.m),(i+1.n))}$	Transportation time from partner m at echelon
((<i>i.m</i>),(<i>i</i> +1. <i>n</i>))	<i>i</i> to partner <i>n</i> at echelon $i+1$
ACT	$\int 1$ if production takes place at partner <i>m</i> at stage <i>i</i>
<i>1.m</i>	0 otherwise
	ζ.
MP	Minimum supply chain partners
[]	An integer function to gain the integer value
	of the real number by eliminating its decimal

2.2 Maximum Performance Model

Seeking for maximization of performance provided that the demand is met.

$$Max \qquad \sum_{i=1}^{I} \sum_{m=1}^{M_{i+1}} SC_{i,m} \times ACT_{i,m}^{'}$$
s.t:
$$(4)$$

$$\sum_{m=1}^{M_i} \left[MaxCP_{i,m}^{p,g} \times (1-PD_{i,m}) \right] \times ACT_{i,m}^{'} \ge UMD_i^{p,g} \quad for \quad all \quad p,g,i \quad (5)$$

$$\sum_{m=1}^{M_i} ACT_{i,m}^{'} = MP \quad for \quad all \quad i \quad (6)$$

2.3 Minimum Cost and Time Model

Seeking for minimization of transportation cost, production cost, and transportation time, as well as maximization of production quality of cross-echelon supply chain partners in forward and reverse logistics.

$$\begin{split} &Min \qquad \sum_{p=1}^{P} \sum_{i=1}^{1} \sum_{m=1}^{M_i} \left[\left(SPC_{(i,m)} - SQ_{(i,m)} \right) \times \sum_{n=1}^{N_i} X_{((i,m),(i+1,n))}^{P,g} \right] \\ &+ \sum_{p=1}^{P} \sum_{i=1}^{I} \sum_{m=1}^{N_i} \sum_{n=1}^{N_i} \left[\left(STC_{((i,m),(i+1,n))} + ST_{((i,m),(i+1,n))} \right) \times X_{((i,m),(i+1,n))}^{P,g} \right] \\ &+ \sum_{p=2}^{P} \sum_{i=2ri=1}^{I} \sum_{m=1}^{i-1} \sum_{n=1}^{M_i} \left[\left(SPC_{(i,m)} - SQ_{(i,m)} \right) \times \sum_{n=1}^{N_i} RX_{((i,n),(i-ri,m))}^{P,g} \right] \\ &+ \sum_{p=2}^{P} \sum_{i=2ri=1}^{I} \sum_{m=1}^{i-1} \sum_{n=1}^{M_i} \sum_{n=1}^{N_i} \left[\left(STC_{((i,n),(i-ri,m))} + ST_{((i,n),(i-ri,m))} \right) \times RX_{((i,n),(i-ri,m))}^{P,g} \right] \\ &S.t. \end{split}$$

$$\sum_{n=1}^{N_{i}} X_{((i:m),(i+1n))}^{P,g} = \sum_{n=1}^{N_{i}} [(PX_{i:m}^{P,g} \times (1 - PD_{i:m})) \times (1 - TFD_{((i:m),(i+1:n))})] + \sum_{n=1}^{N_{i}} RX_{((ri:m),(i:n))}^{P-1,g}$$
(8)

for all
$$p, g, m$$
 and $i = 1$; $ri = 2, 3, 4, ..., I$

$$\sum_{n=1}^{N_i} X_{((i,m),(i+1,n))}^{p,g} = \sum_{n=1}^{N_i} [(PX_{i,m}^{p,g} \times (1 - PD_{i,m})) \times (1 - TFD_{((i,m),(i+1,n))})]$$

$$+ \sum_{n=1}^{N_i} pX_{i,n}^{p-1,g} = \sum_{n=1}^{N_i} [(PX_{i,m}^{p,g} \times (1 - PD_{i,m})) \times (1 - TFD_{((i,m),(i+1,n))})]$$
(9)

$$+\sum_{n=1}^{\infty} RX_{((i+1,n),((i+1)-ri,m))}^{p-1,g} - \sum_{n=1}^{\infty} RX_{((i+1,m),((i+1)-ri,n))}^{p,g} \text{ for all } (9)$$

$$\sum_{n=1}^{N_i} X_{(i-1,m),(i,n)}^{p,g} = \sum_{n=1}^{N_i} [PX_{i,m}^{p,g} \times (1 - PD_{i,m}) \times (1 - TFD_{((i-1,m),(i,n))})] - \sum_{n=1}^{N_i} RX_{((i-1,m),(i,n))}^{p,g} \quad for \quad all \quad p,g,m \quad and \quad i = I$$
(10)

$$\begin{aligned} MinCP_{i,m}^{g} &\leq \sum_{n=1}^{N_{i}} \left[(X_{((i,m),(i+1,n))}^{p,g} \times (1 - TFD_{((i,m),(i+1,n))})) \right] \leq MaxCP_{i,m}^{g} \\ for all p.g.m \end{aligned}$$
(11)

$$\sum_{n=1}^{N_i} X_{((i,m),(i+1,n))}^{p,g} \times (1 - PD_{i,m}) = MD_m^{p,g} \quad for \quad all \quad p,g,m$$
(12)

$$\sum_{n=1}^{N_i} RX_{i,m}^{p,g} = \left(\sum_{n=1}^{N_i} PX_{i,m}^{p,g} + \sum_{n=1}^{N_i} RX_{((i,m),(i+1,n))}^{p-1,g}\right) \times PD_{i,m}$$
(13)

for all p, g, m and ri = 1, 2, 3, ..., I - 1, ri < i

$$RX_{i,m}^{p,g} = \sum_{n=1}^{N_i} RX_{((i,m),((i-r_{i,n}))}^{p,g} \quad for \quad all \quad p,g,m \text{ and}$$

$$ri = 1,2,3,...,1-1 \quad , \quad ri < i$$
(14)

$$\begin{cases} X^{p.g} \\ 0 \end{cases} > 0$$

$$\begin{array}{l} \sum_{\substack{(i,m),(i+1,n) \\ (i,m),(i+1,n) \\ (i,m),(i+1,n) \\ (i,m),(i+1,n) \\ (15)} \end{array}$$

(16)

$$\begin{cases} RX_{(i.m),(i-ri.n)}^{p.g} \ge 0 \\ RX_{((i.m),(i-ri.n))}^{p.g} \in Integer \end{cases} for all p,g,i,m,n and$$
$$ri = 1,2,3,...,1-1 , ri < i$$

2.4 PSO Solving Model

Step 1: implement the distribution plan by the evaluation result in the first phase; first, set the relevant coefficients such as: particle number, velocity, weight and number, and take every forward/reverse iteration transportation line and every product as a particle, with the forward and reverse particle swarm codes. During forward transportation, the demand, transportation losses. production defects, and constraints (8)-(16) are used to randomly generate generation numbers, meanwhile, every particle has its initial velocity and position parameters, which are randomly generated between 0-1 for subsequent and position updating. During velocity reverse transportation, the distribution is performed according to the defect number generated by downstream supply chain partners.

Step 2: substitute forward and reverse particles, obtained from initial solutions, into the object function (7) to compute the target value of every particle.

Step 3: compare the target value of every particle in step 2 to obtain Gbest.

Step 4: modify Pbest and Gbest; if Pbest is superior to Gbest, Gbest is replaced by Pbest.

Step 5: update every particle's velocity and position using Inertia Weight Method (Eberhart et al., 1998)

$$v_i^{k+1} = wv_i^k + c_1 \times rand() \times (s_i^{k^*} - s_i^k) + c_2 \times rand() \times (s_i^{k^*} - s_i^k)$$
(17)
$$s_i^{k+1} = s_i^k + v_i^{k+1}$$
(18)

Where, v_i^k is initial velocity of particle *i*, v_i^{k+1} is a new velocity of particle *i*, *w* is inertia weight, c_1 and c_2 are learning coefficients, $s_i^{k^*}$ is personal best position memory of particle *i*, $s_i^{k^{\#}}$ is group best position memory, s_i^{k+1} is a new position of particle *i*, and *rand()* is a random number ranging between 0-1.

Step 6: check if constraints comply with the constraints and maximum velocity in Eqs. (8)-(16), otherwise perform Step 5.

Step 7: repeat steps 3-6, and compare *Gbest* separately by taking iteration number as the termination condition of computation, making the results show the distribution quantity and evaluation index of every forward and reverse line.

3. CASE STUDY AND RESULTS

This paper conducted a case study of a three-period reverse logistics model for two products under a {6-6-6-4} supply chain network framework, as shown in Figure 1. The defective products of every downstream supply chain partner may be sent back to the upstream for repair or replacement depending on the degree of damage. While the production plan is being prepared, it is required to consider capacity constraints, production costs, transportation costs, production quality, and transportation time of every supply chain partner. The relate data of supply chain partners, as shown in Tables 1 and 2.

Firstly, DEA is used to evaluate the business performance of every supply chain partner, on the precondition that input and output criteria are as defined.

The inputs include number of staff and total assets, while outputs include operating income, with the details listed in Table 3. The supply chain in this case study includes 4 echelons, of which the preceding 3-echelon supply chain is comprised of 6 partners and the final echelon is comprised of 4 customers.

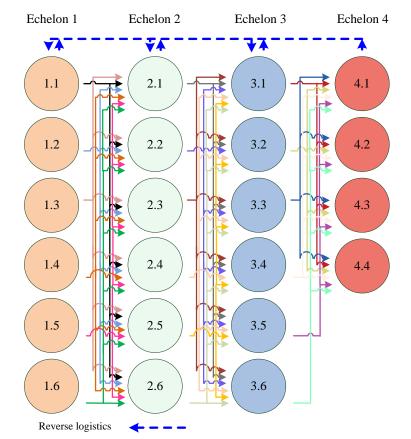


Figure 1: {6-6-6-4} cross-echelon reverse supply chain.

	Table 1: Data of cross-echelon											reverse supply chain network.							
	Eche	elon	1			Echelon 2				Echelon 3									
	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	2.5	2.6	3.1	3.2	3.3	3.4	3.5	3.6	
DR	0.03	0.01	0.02	0.02	0.03	0.02	0.02	0.01	0.03	0.02	0.01	0.05	0.05	0.02	0.01	0.02	0.03	0.02	
PC	5	7	3	2	4	2	5	6	4	4	5	3	6	3	4	6	7	5	
Q	7	5	8	4	9	7	7	9	8	6	8	7	7	6	5	8	8	9	
MaxCP	30	20	50	40	35	50	20	10	15	30	35	30	30	35	20	30	30	20	
MinCP	300	1100	800	500	1600	1300	400	520	600	1600	700	1600	610	750	850	110	750	1500	
	Eche	elon 4	4																
Demano	lProd	luct 1	1		Prod	uct 2			DÌ	R: De	fect r	ate							
	4.1	4.2	4.3	4.4	4.1	4.2	4.3	4.4		C: Pro			ost						
Period 1	Period 1 450 500 400 550 600 510 300 600									Qual	-								
Period 2	2350	400	550	600	600	490	550	370		inCP.									
Period 3	8450	450	650	350	350	460	550	650	M	axCP	: max	mur	n pro	aucu		apaci	ty		

			1	able 2: L	Data of tr	ansporta	tion line	(partial l	1st).			
TL	1.1-2.1	1.1-2.2	1.1-2.3	1.1-2.4	1.1-2.5	1.1-2.6	1.2-2.1	1.2-2.2	1.2-2.3	1.2-2.4	1.2-2.5	1.2-2.6
TR	0.01	0.03	0.03	0.01	0.03	0.02	0.02	0.01	0.03	0.04	0.05	0.02
TC	3	5	8	6	6	4	3	2	7	7	6	5
ΤT	6	4	3	5	4	5	6	7	3	4	6	5
TL	1.5-2.1	1.5-2.2	1.5-2.3	1.5-2.4	1.5-2.5	1.5-2.6	1.6-2.1	1.6-2.2	1.6-2.3	1.6-2.4	1.6-2.5	1.6-2.6
TR	0.03	0.04	0.01	0.02	0.02	0.03	0.01	0.02	0.02	0.04	0.01	0.04
TC	5	4	6	3	3	3	6	7	7	3	8	8
ΤT	6	4	2	5	5	3	2	3	4	5	3	3
TL	2.3-3.1	2.3-3.2	2.3-3.3	2.3-3.4	2.3-3.5	2.3-3.6	2.4-3.1	2.4-3.2	2.4-3.3	2.4-3.4	2.4-3.5	2.4-3.6
TR	0.01	0.02	0.04	0.02	0.02	0.03	0.01	0.02	0.03	0.01	0.02	0.02
TC	1	3	3	2	5	6	3	7	6	2	1	4
ΤT	7	8	6	6	5	6	4	6	7	8	2	3
TL	3.1-4.1	3.1-4.2	3.1-4.3	3.1-4.4	3.2-4.1	3.2-4.2	3.2-4.3	3.2-4.4	3.3-4.1	3.3-4.2	3.3-4.3	3.3-4.4
TR	0.02	0.01	0.04	0.01	0.02	0.02	0.01	0.04	0.01	0.02	0.02	0.03
TC	2	8	5	6	2	3	6	6	1	4	6	6
TT	1	4	5	6	7	8	8	6	8	8	6	6
TL: '	Transpo	rtation li	ine ; TR:	Transpo	rtation d	efect rate	e; TC: Tı	ransporta	tion cos	t; TT: Tra	ansportat	tion time

Table 2: Data of transportation line (partial list).

Table 3	: Business	data.

		elon 1			Eche	elon 2		Echelon 3				
Partners	Number	Total	Operations	Dartnara	Number	Total	Operations	Dartnara	Number	Total	Operations	
ratulets	of Staff	Assets	Income	raitheis	of Staff	Assets	Income	ratulets	of Staff	Assets	Income	
1.1	401	4,240	311,600	2.1	248	2,365	262,000	3.1	174	1,240	145,000	
1.2	425	3,514	268,900	2.2	290	2,600	264,000	3.2	150	1233	132,000	
1.3	366	3,060	283,000	2.3	233	1,800	188,000	3.3	158	1,133	125,000	
1.4	391	3,400	284,600	2.4	310	2,970	235,000	3.4	194	1,523	142,800	
1.5	294	2,850	218,400	2.5	311	2,750	275,000	3.5	146	1,356	151,000	
1.6	313	2,980	216,330	2.6	197	2,160	214,000	3.6	102	965	116,100	

Moreover, the correlation among number of staff, total assets, and operating income is checked through correlative analysis, with the correlation degree of inputs and outputs for supply chain partners listed in Table 4. It can be seen that there is no negative correlation among the criteria in every echelon. The business performance of every supply chain partner evaluated by the CCR-I model of the DEA-Solver, is as listed in Table 5. Based on the market demands, the number of partners of each echelon can be found out

via the performance model. For instance, if 450, 500, 400, 550 products are required in the fourth echelon (customer) in the first period, 3, 4, and 5 supply chain partners are required in the first, second and third echelon separately.

Based on performance and market demand, the PSO method is used to solve the cost and time model to evaluate and select appropriate partners at every echelon and to form a distribution plan. The results are shown in Tables 6-8.

Table 4: Correlation coefficients.

	Echel	on 1			Echel		Echelon 3						
	Number	Total	Operations	Number Total Operations				Number Total Operation					
	of Staff	Assets	Income		of Staff	Assets	Income		of Staff	Assets	Income		
Number of Staff	1	0.744	0.832	Number of Staff	1	0.846	0.646	Number of Staff	1	0824	0.651		
Total Assets		1	0.807	Total Assets		1	0.713	Total Assets		1	0.819		
Operations Income			1	Operations Income	tions		1	Operations Income			1		

	Echelon 1			Echelon 2		Echelon 3			
Supplier Partner	Score Rank		Supplier Partner	Score	Rank	Supplier Partner	Score	Rank	
1.1	1	1	2.1	1	1	3.1	0.971	2	
1.2	0.827	6	2.2	0.916	4	3.2	0.889	5	
1.3	1	1	2.3	0.942	3	3.3	0.917	4	
1.4	0.941	4	2.4	0.716	6	3.4	0.779	6	
1.5	0.958	3	2.5	0.902	5	3.5	0.925	3	
1.6	0.891	5	2.6	1	1	3.6	1	1	

Table 5: Analytical results of CCR-I model.

Table 6: First-period distribution plan.

						Per	riod 1					
То	Echelon 1		Echelon 2				Echelon	3	Echelon 4			
Form	1.1 1.3 1.5	2.1	2.2	2.3	2.6	3.1	3.5	3.6	4.1	4.2	4.3	4.4
	1.1	$0^{a}/26^{b}$	87/10	0/0	10/0							
Echelon 1	1.3	111/87	8/76	0/0	432/592							
	1.5	0/16	428/81	171/510	997/982							
	2.1					85/61	0/0	23/64				
Echelon 2	, 2.2					33/36	178/2	288/123				
Echelon 2	2.3					11/191	99/80	55/219				
	2.6					90/197	177/670	1064/588				
	3.1								97/137	5/0	25/0	76/313
Echelon 3	3 3.5								89/207	144/225	10/0	189/283
	3.6								287/287	376/311	385/315	309/31

a: distribution quantity of product 1; b: distribution quantity of product 2

						Tab	ole 7: Sec	ond-period	distribut	tion plan.					
									Period 2						
Т	To Echelon 1 Echelon 2								Echelon 3	3	Echelon 4				
Form		1.1	1.3	1.5	2.1	2.2	2.3	2.6	3.1	3.5	3.6	4.1	4.2	4.3	4.4
Eabolor	1.1				14/1	26/77	0/19	0/0							
Echelor	1.3				3/140	28/195	45/0	549/410							
1	1.5				79/7	42/58	302/200	1175/1278							
	2.1	2/1	1/1	0/1					0/115	32/0	60/29				
Echelor	n 2.2	1/0	2/2	3/0	Darras				3/0	0/0	90/139				
2	2.3	1/12	4/2	1/2	Reve	se			131/0	100/169	101/41				
	2.64	40/61	21/16	10/0					526/210	469/400	599/950				
Echelor	3.1	0/1	2/4	4/7	0/0	0/0	3/5	2/7				91/194	0/22	335/84	180/0
3	¹ 3.5	6/5	1/7	0/0	0/4	4/6	2/1	1/0				219/191	2/319	222/19	128/192
3	3.6	10/2	4/3	0/5	10/1	0/5	2/3	2/1				58/246	418/354	14/475	318/195
	4.1	2/1	4/5	0/1	0/2	1/1	0/1	3/2	1/2	2/4	1/0]			
Echelor	n 4.2	2/1	1/2	1/1	1/1	0/0	0/2	2/0	1/2	1/1	1/0				
4	4.3	1/0	1/0	0/1	1/0	0/0	0/0	0/1	0/0	1/1	0/0				
	4.4	2/2	4/4	1/0	0/2	3/1	0/2	2/1	1/1	3/4	1/1				

					Ta	able 8: T	hird-period	distribu	tion plan					
								Period	3					
Т	To Echelon 1 Echelon 2								Echelon	3	Echelon 4			
Form	1.1	1.3	1.5	2.1	2.2	2.3	2.6	3.1	3.5	3.6	4.1	4.2	4.3	4.4
Echolor	1.1			3/5	0/63	18/0	118/10							
Echelor	1.3			72/16	156/104	61/148	229/455							
1	1.5			0/40	237/16	41/285	1319/1240							
	2.1 1/0	1/3	0/0]				63/55	0/0	10/4				
Echelor	1 2.2 0/3	1/1	0/0					259/4	18/15	100/158				
2	2.3 2/5	8/0	1/2	Revei	rse			47/215	1/34	66/163				
	2.6 34/8	42/62	8/13					111/236	429/586	999/754				
Fahalan	3.1 9/3	4/0	3/5	1/1	2/1	7/1	6/5				245/108	140/143	0/153	58/69
Echelor	¹ 3.5 4/5	0/0	5/4	3/2	4/1	2/4	0/1				0/214	0/0	235/156	191/233
3	3.6 1/0	2/6	6/7	2/5	1/6	4/2	1/0				228/46	330/337	441/264	117/377
	4.1 0/1	2/3	3/3	2/1	0/2	1/2	0/1	1/0	1/2	1/4				
Echelor	4.2 1/2	0/0	3/2	0/1	1/0	1/2	0/0	0/2	0/0	2/1				
4	4.3 0/1	0/0	3/1	1/0	0/1	0/1	0/0	0/1	0/1	1/0				
	4.4 2/3	3/0	2/1	0/0	2/0	2/2	2/2	1/2	3/1	2/1				

4. CONCLUSIONS

This paper established a methodology to discuss the selection of cross-echelon reverse supply chain partners and distribution planning. Firstly, DEA is used to evaluate the business performance of every supply chain partner to efficiently reduce the supply chain framework and improve the execution efficiency of the system. Then, an optimal mathematical model for selection of partners in the supply chain with considering resource constraints and transportation and production losses. Finally, a PSO is used to solve the optimal mathematical to implement the distribution plan. In addition, the results of a case show that the proposed methodology can find the appropriate production and transportation plan for the proposed reverse logistics problem.

REFERENCES

- Ammons JC, Realff MJ and Newton D (1997). Reverse production system design and operation for carpet recycling. *Working paper*, Georgia Institute of Technology.
- Barros AI, Dekker R and Scholten V (1998). A two-level network for recycling sand : A case study. *Eur J Oper Res* **110**: 199-214.
- Cohen M (1988). Replace. Rebuild or Remanufacture. *Equip Manage* 16: 22-26.
- Charnes A, Cooper WW and Rhodes E (1978). Measuring the efficiency of decision making units. *Eur J Oper Res* **2:** 429-444.

Evans G.W and Ko HJ (2007). A genetic algorithm-based

heuristic for dynamic integrated forward/reverse logistics network for 3PLs. *Comput Oper Res* **34:** 346-366.

- Fleischmann M, Bloemhof-Ruwaard JM, Dekker R, Lann EVD, Van Nunen JAEE and Wassenhove LNV (1997). Quantitative Models for Reverse Logistics: A review. *Eur J Oper Res* 103: 1-17.
- Gen M and Cheng R (1997). Genetic algorithm and engineering design. Wiley: New York.
- Jayaraman V, Guide VDR, Srivastava R (1999). A closedloop logistics model for remanufacturing. J Oper Res Soc 50: 497-508.
- Kroon L and Vrijens G (1995). Returnable containers: an example of reverse logistics. Int J Phys Distrib Log Manage 25: 56-68.
- Min H, Ko HJ and Ko CS (2006). A genetic algorithm approach to developing the Multi-echelon reverse logistics network for product returns. *Omega-Int J Mngt Sci* **34:** 56-69.
- Spengler T, PÜchert H, Penkuhn T and Rentz O (1997). Environmental integrated production and recycling management. *Eur J Oper Res* **97:** 308-326.
- Sheu JB and Chou YH (2005). An integrated logistics operational model for green-supply chain management. *Transp Res Pt e* **41:** 287-313.
- Trebilcock B (2001).Reverse logistics heroes. *Modern Material Handling* **56:** 63-65.