

A Factory Simulation System Based on Cloud Services and

Portable Scheduling Intelligence

Toly Chen
Department of Industrial Engineering and Systems Management

Feng Chia University, Taichung, Taiwan

Email: tolychen@ms37.hinet.net

Tzu-Yun Lin

Department of Industrial Engineering and Systems Management

Feng Chia University, Taichung, Taiwan

Tel: (+886) 962-066-896, Email: jennycrta@gmail.com

Abstract. Cloud-based factory simulation systems have become technically affordable solutions for the

effective and efficient simulation of manufacturing systems. However, a simulation cloud (SC) may be

incapable of implementing uncommon sequencing and scheduling methods. In addition, ensuring the logical

correctness of the scheduling method adopted on an SC is difficult. To resolve these problems, the concept of

scheduling intelligence, a special type of humanized intelligence, is proposed in this study. Scheduling

intelligence accounts for the subjective beliefs and judgment in scheduling jobs in a factory and can be

encapsulated into extensible markup language (XML) files based on the standard data structure defined on a

cloud service provider (CSP). Then, an SC uses a dedicated XML parser to convert the XML files into

modules to be called by the main program of the factory simulation system adopted on the SC. Two examples

are provided to illustrate the practicability of the proposed methodology.

Keywords: Cloud manufacturing, cloud computing, humanized computing, scheduling, intelligence.

1. INTRODUCTION

Simulation has been applied to improve the

performances of factories by, for example, finding a gain-

optimal policy that minimizes the long-term inventory costs

(Mahadevan et al., 1997), comparing the performances of

different scheduling methods (Chen and Lin, 2009),

enhancing the product and production engineering process

(Kühn, 2006), and translating six-sigma philosophy into

competitive solutions (Miller, 1994). However, simulating a

factory requires a lot of expertise, takes much time and

effort, and is a long-standing task. As a result, not many

factories have successfully built, let along practicably

applied, their own simulation models. Facing these

problems, factories are seeking for alternatives, such as

cloud-based simulation services, which constitute a motive

for this study.

Cloud manufacturing (CM) is the application of cloud

computing in the manufacturing sector to enabling on-

demand network access to a shared pool of manufacturing

resources including virtualized machines (Wu et al., 2007;

Colombo et al., 2013), information systems, services, and

manufacturing knowledge (Chen et al., 2014). Most of the

existing cloud manufacturing system were configured as

client-server systems. A client reads the web service

description language (WSDL) file (in extensible markup

language, XML) on a server to know what manufacturing

services are available on the server. The WSDL file

instructs a client how to call a manufacturing service, the

parameters that should be inputted when making a call, and

the data structure of the data exchanged. A factory is a

client to a cloud service provider (CSP), while a service

cloud can be either a client or a server to a CSP. A well-

established infrastructure, the operating strategies of a CSP,

and the sequencing of jobs on a SC are some critical issues

to the effectiveness of a cloud manufacturing system. This

study is devoted to the last issue. Specifically, a factory

simulation system used by a SC is to be developed, which

supports the functionality of a SC and therefore can be

called a cloudlet according to the definition by Ferreira et al.

(2013). However, this topic has rarely been investigated in

the past.

The main problem associated with the existing

methods is – the data structures of a factory model in

different simulation systems are not the same, which cause

a problem if the factory is to be simulated collaboratively

by a number of SCs that use heterogeneous modelling

logics (Pinedo, 2008) and database management systems.

To solve this problem, in this study, a standard format (in

extensible markup language (XML)) (Chen and Lin, 2015)

is defined for modelling a factory online. In addition, the

output report from a SC is also generated in XML to

facilitate the subsequent aggregation operation. Finally, an

experimental simulation system is established to illustrate

the applicability of the proposed methodology.

On the other hand, only a few scheduling rules, such

as first in first out (FIFO), earliest due date (EDD), and

shortest processing time (SPT), are commonly built in the

existing scheduling systems. To apply an advanced or

tailored scheduling method, a user must write program

codes with the programming language specified by the

simulation system, which is inconvenient and error-prone

and reduces the user’s willingness to use the simulation

system. To solve this problem, the concept of scheduling

intelligence is proposed. Scheduling intelligence is a type

of humanized intelligence that accounts for subjective

beliefs and judgment in scheduling the jobs in a factory.

Based on the standard data structure of a factory model,

scheduling intelligence can be realized by coding an XML

for describing a scheduling method that can then be

exchanged between a CSP and an SC or between two SCs.

In the past, a scheduling method was either described using

pseudocodes or converted into the corresponding structured

query language (SQL) operations. However, pseudocodes

are usually not standardized, and SQL operations have

security risks such as SQL intrusion or injection (Pinzón et

al., 2013). Therefore, this study uses XML.

2. THE PROPOSED METHODOLOGY

2.1 Defining a Factory Simulation Model in XML

Extensible Markup Language (XML) is an open

standard that defines a set of rules for encoding documents

in a format which is both human-readable and machine-

readable (World Wide Web Consortium, 2008). XML is

designed for exchanging data on the Internet. In addition, it

is straightforward to import or export XML files into and

from common databases. For these reasons, defining a

factory simulation model in XML is a viable strategy for

overcoming the incompatibility problem among various

simulation systems. In the literature, Chen and Lin (2015)

have taken this treatment. In their methodology, the data

structures of the XMLs for modelling a factory were

defined in document type definition (DTD) or XML

schema definition (XSD) files.

In the proposed methodology, a factory simulation

model is composed of two XML files – jobs.XML, and

scenario.XML. The XSDs for defining the XML files are

shown in Figure 1. In addition, another XSD for defining

the output report from a SC is given in Figure 2, in which

the name of SC is a required field for discriminating the

output reports from different SCs.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="job">

<xs:complexType>

<xs:sequence>

<xs:element name="job_no" type="xs:string"/>

<xs:element name="release_time" type="xs:date"/>

<xs:element name="processing_time" type="xs:decimal"/>

<xs:element name="due_date" type="xs:date"/>

</xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

(jobs.XSD)

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="scenario">

<xs:complexType>

<xs:sequence>

<xs:element name="scenario_no" type="xs:string"/>

<xs:element name="dispatching_rule" type="xs:string"/>

</xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

(scenario.XSD)

Figure 1: The XSDs for defining the XMLs.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="output">

<xs:complexType>

<xs:sequence>

<xs:element name="job_no" type="xs:string"/>

<xs:element name="SC" type="xs:string"/>

<xs:element name="start_time" type="xs:date"/>

<xs:element name="completion_time" type="xs:date"/>

<xs:element name="lateness" type="xs:decimal"/>

</xs:seque>

 </xs:complexType>

</xs:element>

</xs:schema>

(output.XSD)

Figure 2: The XSD for defining the output report.

Based on the XSDs, the simulation model of a factory
and the accompanying scenario are both defined in XML.

The corresponding output report is also generated in XML.

2.2 Scheduling Intelligence

Traditionally, scheduling intelligence is realized in the

following ways:

(1) Writing the pseudo codes for implementing a

scheduling intelligence. However, pseudo codes are

usually not standardized.

(2) Drawing a flow chart that can be converted into

program codes for implementing a scheduling

intelligence. However, it is not easy to draw a

logically correct flow chart that can be smoothly

converted into the required program codes.

(3) Developing a module to perform the required database

operations, set operations, and calculations. However,

the data structures, databases, and programming

languages adopted in different simulation systems are

not the same, causing difficulties in performing

scheduling intelligence in exactly the same way.

Consequently, transferring scheduling intelligence

from one system to another becomes challenging.

Cloud manufacturing provides some solutions to these

problems:

(1) Data transferred between the participants of a cloud

manufacturing system are usually encoded in the form

of standardized XML.

(2) The data structure of a simulation model is defined by

the DTD or XSD files on a CSP. To serve the CSP, an

SC must obey or adapt itself to the standard data

structure.

With a standardized data format and structure, the

operations required for implementing scheduling

intelligence can be defined in a standard manner. Thus,

scheduling intelligence can be easily transmitted from one

participant to another and across different systems and

platforms; in other words, it becomes portable.

The proposed methodology involves the following

three major parts, as illustrated in Fig. 3:

(1) The steps required for implementing scheduling

intelligence, which are defined in XML files based on

the standard data structure defined on a CSP.

(2) The XSDs for defining the XML files.

(3) A standard terminology table.

Figure 3: Major components of the proposed methodology.

3. AN EXPERIMENTAL SIMULATION SYSTEM

An experimental system has been established to

illustrate the applicability of the proposed methodology.

Visual Studio 2015 was applied to develop the

experimental simulation system on a PC with Intel Core i7-

4770 CPU 3.40 GHz and 8 GB RAM. The program codes

were provided in Appendix. There were two modes of

running the experimental simulation system. In the manual

mode, the system administrator manually controlled the

execution of each step, while in the automatic mode, the

system continuously scanned the system database to search

for any simulation task that has not been fulfilled (see

Figure 4). If there are more than one unhandled task, the

one with the earliest granted time would be simulated first.

Figure 4: The system database is scanned for unhandled tasks.

The factory data and simulation scenario were prepared

by an engineer of the simulated factory and uploaded on

to a CSP. Both of the two files were in XML. Then, the

data of jobs and the scenario were imported from the CSP

based on the URL provided by the CSP, and were saved into

the system database of the SC if necessary. In the experiment,

the system database was built using Microsoft Access 2013.

Subsequently, the dispatching rule specified in the scenario

Standard

Data

Structure

(.XSD)

FIFO.XML

step.XSD

Standard

Terminology

Table

was applied to sequence jobs in the factory. Dispatching rules

built in the experimental system included first in first out

(FIFO), shortest processing time (SPT), earliest due date

(EDD), and critical ratio (CR). Let us take the FIFO

dispatching rule as an example. The XML file for

implementing FIFO is shown in Figure 5, which is defined on

the basis of the standard data structure, the XSD file, and the

standard terminology table.

<?xml version="1.0" encoding="UTF-8"?>
<dataroot>
 <step>
 <step_name>sequencing</step_name>
 <input>ALL</input>
 <sort_by>release_time</sort_by>
 <output>S1</output>
 </step>
 <step>
 <step_name>scheduling</step_name>
 <input>S1</input>
 <condition>release_time>SYSTEM_TIME</condition>
 <satisfied>SYSTEM_TIME=release_time</satisfied>
 <calculation>start_time=SYSTEM_TIME</calculation>
 <calculation>completion_time=start_time+processing_time</calculation>
 <calculation>SYSTEM_TIME=completion_time</calculation>
 </step>

</dataroot>

Figure 5: XML file for implementing FIFO.

Although the simulated factory was small, the simul

ation results still successfully demonstrated the applicabili

ty of the proposed methodology. In addition, it becomes

 possible for a general-purpose computing cloud to join

the collaborative simulation of a factory by incorporating

 the related scheduling intelligences, which not only redu

ces the technical burden on a computing cloud but is al

so conducive to the scalability of the cloud-based factory

 simulation system.

4. CONCLUSIONS

A standard format (in XML) is defined for modelling a

factory online in this study. In this way, the factory model can

be easily imported into various database management systems,

which makes it suitable for cloud-based applications, such as

simulating a factory by several SCs collaboratively. In

addition, the output report from a SC is also generated in

XML to facilitate the subsequent aggregation operation. To

illustrate the applicability of the proposed methodology, an

experimental simulation system, including a dedicated

simulator that accepted and generated only XML files, has

been established. The experimental simulation system was

then applied to fulfill a factory simulation task passed from a

CSP.

Subsequently, for implementing scheduling intelligence,

defining a factory simulation model on a standard data

structure defined on a CSP is a prerequisite. Subsequently, the

steps required for implementing scheduling intelligence are

defined in XML files based on the standard data structure.

Finally, an SC uses a dedicated XML parser to convert the

XML files into modules to be called by the main program of

the factory simulation system adopted on the SC.

The successful experience on this small case not only

supported the effectiveness of the proposed methodology, but

also encouraged us to extend the capability of the

experimental simulation system.

ACKNOWLEDGMENTS

This study is sponsored by Ministry of Science and

 Technology, Taiwan.

REFERENCES

Colombo, A. W., Bangemann, T., Karnouskos, S., Delsing, J.,

Stluka, P., Harrison, R., Jammes, F., and Lastra, J. L.

(2013) Industrial Cloud-Based Cyber-Physical Systems -

The IMC-AESOP Approach. Switzerland: Springer

International Publishing.

Miller, D. J. (1994) The role of simulation in semiconductor

logistics. Winter Simulation Conference Proceedings, pp.

885-891.

Lindskog, E., Berglund, J., Vallhagen, J., Berlin, R., and

Johansson, B. (2012) Combining point cloud technologies

with discrete event simulation. Proceedings of the Winter

Simulation Conference, 281, 1-10.

Ferreira, L., Putnik, G., Cunha, M., Putnik, Z., Castro, H.,

Alves, C., Shah, V., and Varela, M. L. R. (2013). Cloudlet

architecture for dashboard in cloud and ubiquitous

manufacturing. Procedia CIRP, 12, 366-371.

Lamport, L., “Time, clocks, and the ordering of events in a

distributed system,” Communications of the ACM, vol. 21,

no. 7, pp. 558-565, 1978.

Wu, L., Meng, X. and Liu, S. (2007) Service-oriented

encapsulation of manufacturing resources. IEEE

International Conference on Services Computing, pp.

727-728.

Held, M., and Karp, R. M. (1962) A dynamic programming

approach to sequencing problems. Journal of the Society

for Industrial and Applied Mathematics, 10(1), 196-210.

Pinedo, M. L. (2008) Scheduling: Theory, Algorithms, and

Systems, New York: Prentice Hall.

Brucker, P. (2001) Scheduling Algorithms. Berlin: Springer.

Mahadevan, S., Marchalleck, N., Das, T. K., and Gosavi, A.

(1997) Self-improving factory simulation using

continuous-time average-reward reinforcement learning.

Proceedings of the 14th International Conference on

Machine Learning, pp. 202-210.

SQLCourse.com (2015) What is SQL?

http://www.sqlcourse.com/intro.html

Chen, T. (2003) A fuzzy back propagation network for output

time prediction in a wafer fab. Applied Soft Computing,

2(3), 211-222.

Chen, T. (2013) An effective dispatching rule for bi-objective

job scheduling in a wafer fabrication factory - considering

the average cycle time and the maximum lateness.

International Journal of Advanced Manufacturing

Technology, 67(5-8), 1281-1295.

Chen, T. (2014) Strengthening the competitiveness and

sustainability of a semiconductor manufacturer with cloud

manufacturing. Sustainability, 6, 251-268.

Chen, T., and Lin, C.-W. (2015) Estimating the simulation

workload for factory simulation as a cloud service.

Journal of Intelligent Manufacturing, in press.

Chen, T., and Lin, Y.-C. (2009) A fuzzy-neural fluctuation

smoothing rule for scheduling jobs with various priorities

a semiconductor manufacturing factory. International

Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 17(3), 397-417.

Chen, T., and Lin, Y.-C. (2015) A digital equipment identifier

system. Journal of Intelligent Manufacturing, in press.

Chen, T., and Wang, Y.-C. (2015) Estimating simulation

workload in cloud manufacturing using a classifying

artificial neural network ensemble approach. Robotics &

Computer Integrated Manufacturing, in press.

Chen, T., Wang, Y.-C., and Lin, Z. (2014) Predictive distant

operation and virtual control of computer numerical

control machines. Journal of Intelligent Manufacturing,

in press.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

(2009) Introduction to Algorithms, MIT Press.

Kühn, W. (2006) Digital factory: simulation enhancing the

product and production engineering process. Proceedings

of the 38th Conference on Winter Simulation, pp. 1899-

1906.

World Wide Web Consortium (2008) Extensible markup

language (XML) 1.0 (fifth edition).

http://www.w3.org/TR/REC-xml/

Chi, X., Pepper, M. P., and Spedding, T. A. (2004) A web-

based virtual factory and simulator for industrial statistics.

Winter Simulation Conference, pp. 2103-2106.

