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Abstract This paper proposes an extended model of the replacement overtime policy for a cumulative damage 

model. We consider an operating unit which suffers some damage due to shocks. It is assumed that the total 

damage is additive, and the unit fails when the total damage has exceeded a prespecified level. We suppose that 

the unit is replaced at 𝑵th (𝑵 = 𝟏, 𝟐, …) shock over the time 𝑻 or at failure, whichever occurs first. That is, we 

start to observe occurrence of shocks  after time 𝑻. For such a model, we obtain the mean time to replacement and 

the expected costs rate, and discuss the optimal number of 𝑵 which minimizes the expected cost rate when 

shocks occur in a Poisson process. Further, numerical examples are given, and suitable discussions are made. 
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1. INTRODUCTION 
 
We propose an extended model of the replacement  

overtime policy for equipment management of shock and 

damage models. In recent years, equipment management has 

become more important to complete projects such as 

software development rapidly, safety and accurately. 

Furthermore, the equipment has become more complexity, 

and more difficult to check the state of the equipment by 

looking the appearance. We consider therefore a case of that 

the equipment is replaced at a completion of uses to avoid 

interruption of work on the way of using cycles. Such a 

model is called as  maintenance overtime policy (Nakagawa 

and Zhao., 2015). Furthermore, we consider assumptions 

that the equipment has damage at every use, and fails when 

the   total damage has exceeded a prespecified level. Such 

a model is called as cumulative damage model (Nakagawa, 

2006). 

We propose a maintenance policy which extends 

maintenance overtime policy for cumulative damage model. 

It is reasonable for such equipment to decide a maintenance 

such as scheduled time or number of shocks  to maintain or 

replace the equipment. We treat a case that we cannot 

maintain the equipment until the scheduled time. One 

example is a rental of equipment with some reservations. For 

such a case, it is one way that the equipment is maintained or 

replaced at prespecified number of use over scheduled time. 

There have many studies of maintenance policies  using 

reliability theory (Barlow and Proschan, 1965; Nakagawa, 

2015)．The maintenance models that the unit is replaced at 

a random working time are studied (Nakagawa, 2014; Chen 

et.al., 2010). Maintenance overtime policies where the unit 

is replaced at a first time of completion of works over 

planned time have been discussed (Nakagawa and Zhao., 

2015; Zhao et.al., 2013; Zhao et.al., 2014). The cumulative 

damage model have also many studies in reliability theory 

(Stallmeyer, 1968; Bogdanoff. et.al., 1985; Nakagawa, 2006). 

In this paper, we consider an extended replacement  

overtime policy for a cumulative damage to maintain an 

operating unit. The  unit which is used for random times  

and suffers some damage due to shocks. It is assumed that 

the unit fails when the total damage has exceeded a 



 

 

prespecified level. The total damage is additive, and the 

amount of damage cannot be investigated. We assume that 

the unit is replaced at 𝑁 th (𝑁 = 1,2, … ) shock over  

planned time 𝑇 or at failure, whichever occurs first. Figure 

1 shows the process of the model when the unit is replaced 

at 𝑁th shock over time 𝑇. Figure 2 shows the process when 

the units fails and is replaced. That is, we start to observe 

occurrences of shocks after time 𝑇 , and introduce a 

replacement cost and monitoring cost. 

For such a model, we obtain the expected costs rate and 

discuss optimal policies  which minimize it. Section 2 shows 

the assumptions and notations of the model, and obtains the 

mean time to replacement and the expected cost rate. Section 

3 discusses optimal number 𝑁 and time 𝑇 which minimize 

the expected cost rate when shocks occur in a Poisson 

process. Sections 4 gives numerical examples of optimal 𝑁 

and 𝑇  when each damage is exponential. We discuss the 

tendencies for several parameters  in numerical examples. 

 

2. ASSUMPTIONS  
 

We make following assumptions  of the replacement  

policy for the cumulative damage model:  

 

(i) Let 𝑋𝑗  be a random variable that denotes a sequence of 

interval times between successive shocks with an 

identical distribution 𝐹(𝑡) ≡ Pr{𝑋𝑗 ≤ 𝑡}  (𝑗 = 1,2, …  ) 

and finite mean 𝜇 ≡ ∫ �̅�(𝑢)𝑑𝑢
𝑡

0 . A density function of 

𝐹(𝑡)  is 𝑓(𝑡) ≡ 𝑑𝐹(𝑡)/𝑑𝑡 , i.e., 𝐹(𝑡) = ∫ 𝑓(𝑢)
𝑡

0 𝑑𝑢 , 

and the failure rate is ℎ(𝑡) ≡ 𝑓(𝑡)/�̅�(𝑡) , where 

Φ̅(𝑡) ≡ 1 − Φ(t) for any function Φ(𝑡). The failure 

rate increases strictly with 𝑡  from ℎ(0)  to  ℎ(∞)  . 

The j-fold Stieltjes convolution of 𝐹(𝑡) is 𝐹(𝑗)(𝑡) ≡
Pr{𝑋1 + 𝑋2 +⋯+ 𝑋𝑗 ≤ 𝑡}  ( 𝑗 = 1, 2,… ) and 

𝐹(0)(𝑡) ≡ 1 for 𝑡 ≥ 0. 

 

(ii) Let 𝑊𝑗  be a random variable that denotes the damage 

produced by the 𝑗 th shock, where  𝑊0 ≡ 0,  with a 

cumulative distribution 𝐺(𝑡) ≡ Pr{𝑊𝑗 ≤ 𝑡}  ( 𝑗 =
1, 2,…  ). The j-fold Stieltjes convolution of 𝐺(𝑡)  is 

𝐺(𝑗)(𝑡) ≡ Pr{𝑊1 + 𝑊2 +⋯+𝑊𝑗 ≤ 𝑡}  ( 𝑗 = 1, 2, … ) 

and 𝐺(0)(𝑡) ≡ 1 for 𝑡 ≥ 0. 

 

(iii) Let 𝑁(𝑡) denote the random variable which is the total 

number of shocks up to time 𝑡 (𝑡 ≥ 0). Then, define a 

random variable 

 

                            ,, 

 

which represents the total damage at time 𝑡 . It is 

assumed that the unit fails when the total damage has 

exceeded a prespecified level 𝐾 (0 < 𝐾 < ∞).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(iv) The unit is replaced at 𝑁th (𝑁 = 1, 2, …) shock over 

time 𝑇 or at failure, whichever occurs first. 

 

(v) Cost 𝑐𝐹  is a replacement cost when the unit fails, and 

cost 𝑐𝑁  (𝑐𝐹 > 𝑐𝑁) is a replacement cost when the unit 

is replaced at 𝑁th shock over time 𝑇. 

 

Form the above assumptions, we obtain the expected 

cost rate. The probability that the unit is replaced at shock 𝑁 

over time 𝑇 is 

and the probability that it is replaced at failure is  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Process for preventive replacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Process for failure. 



 

 

where (1) + (2) = 1. The mean time to replacement is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, the expected cost rate is 
 
 
 
 
 
 
 

When the unit is replaced at shock 𝑁, 
 
 
 
 
 
 
 

When the unit is replaced at the first completion 
of shocks over time 𝑇 is 

 

 

 
 
 
 
 

3. OPTIMAL REPLACEMENT POLICIES 
 

When 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡   and 𝑄(𝑁) ≡ [𝐺
(𝑁)(𝐾) −

𝐺
(𝑁+1)(𝐾)]/𝐺

(𝑁)(𝐾)  increases strictly with 𝑁  to 1 , we 

derive optimal policies which minimize the expected cost rates. 

In this case, the expected cost rate in (4) is 

 
 
 
 
 
 
 
 

3.1 Optimal 𝑵∗ 
 

We find optimal 𝑁 ∗ to minimizes 𝐶(𝑁) in (5). 

Forming the inequality 𝐶(𝑁 + 1) − 𝐶(𝑁) ≥ 0 

 

 
 
 
 

where  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that 𝑄(𝑁, 𝑇) increases strictly with 𝑁 from 𝑄(𝑇) to 

1 , and increases strictly with 𝑇  from 𝑄(𝑁)  to 1 

(Appendix). Thus, because the left-hand side of (8) increases 

strictly with 𝑁 to 1 + 𝑀(𝐾), where 𝑀(𝐾) ≡ ∑ 𝐺
(𝑗)(𝐾)∞

𝑗=1 . 

Therefore, if 𝑀(𝐾) > c𝑁/(𝑐𝐹 − 𝑐𝑁), then there exists a finite 

and unique minimum 𝑁 ∗ (1 ≤ 𝑁 ∗ < ∞) which satisfies (8). 

 
 



 

 

3.2 Optimal 𝑻∗ 
 

We find optimal 𝑇∗  to minimize 𝐶(𝑇)  in (6). 

Differentiating 𝐶(𝑇) with respect to 𝑇 and setting it equal to 

zero, 

 
 
 
 
 
 
 
 

whose left-hand side increases strictly with 𝑇 to 1 + 𝑀(𝐾). 

Thus, if 𝑀(𝐾) > 𝑐𝑁/(𝑐𝐹 − 𝑐𝑁), then there exists a finite and 

unique 𝑇∗ (0 ≤ 𝑇∗ ≤ ∞) which satisfies (10). 

 
3.3 Optimal 𝑵𝟎

∗  and 𝑻𝟎
∗  

 
When 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡  , 𝑄(𝑁)  increases strictly with  

𝑁  to 1  and 𝑀(𝐾) >  𝑐𝑁/(𝑐𝐹 − 𝑐𝑁) , we find optimal 𝑁0
∗ 

and 𝑇0
∗ which minimize 𝐶(𝑁, 𝑇) in (7). 

First, we find optimal 𝑁0
∗  to minimizes 𝐶(𝑁, 𝑇)  for 

fixed 𝑇 (0 ≤ 𝑇 < ∞). Forming 𝐶(𝑁 + 1, 𝑇) − 𝐶(𝑁, 𝑇) ≥ 0, 

 
 
 
 
 
 
 
whose left-hand side increases strictly with 𝑁 to 1 + 𝑀(𝐾). 
Thus, if 𝑀(𝐾) > 𝑐𝑁/(𝑐𝐹 − 𝑐𝑁), then there exists a finite and 

unique minimum 𝑁0
∗ (1 ≤ 𝑁0

∗ < ∞) which satisfies (11). 
Letting 𝐿(𝑁, 𝑇) be the left-hand side of (11), 𝐿(𝑁, 𝑇) 

increases strictly with 𝑇 from 

 
 
 

 
which agrees with (8). Thus, 𝑁0

∗ decreases with 𝑇 from 𝑁 ∗ 

given in (8), and 1 ≤ 𝑁0
∗ < 𝑁 ∗. In addition, because 𝐿(1, 𝑇) 

agrees with the left-hand side of (10), if 𝑇 ≥ 𝑇 ∗ given in (10), 

then 𝑁0
∗ = 1, and conversely, if 𝑇 < 𝑇∗ then 𝑁0

∗ ≥ 2. 
Next, we find optimal 𝑇0

∗  to minimize 𝐶(𝑁, 𝑇)  for 

fixed 𝑁 (1 ≤ 𝑁 < ∞). Differentiating 𝐶(𝑁, 𝑇) with respect 

to 𝑇 and setting it equal to zero, 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
whose left-hand side agrees with 𝐿(𝑁, 𝑇)  and increases 

strictly with 𝑇  from 𝐿(𝑁, 0)  given in (8) to 𝐿(𝑁,∞) ≥
𝑀(𝐾). Thus, because 

 

 

 

 

𝑇0
∗ = 0 , i.e., optimal policy which minimizes 𝐶(𝑁, 𝑇)  is 

𝑁0
∗ = 𝑁 ∗ and 𝑇0

∗ = 0. Therefore, replacement with shock 𝑁 

is better than replacement overtime when both replacement  

costs are the same. 

Furthermore, if 𝑁 ≥ 𝑁 ∗, then 𝑇0
∗ = 0, and conversely, 

if 𝑁 ≤ 𝑁 ∗ − 1,  then 𝐿(𝑁, 0) < 𝑐𝐹/(𝑐𝐹 − 𝑐𝑁)  and there 

exists a finite and unique 𝑇0
∗ (0 < 𝑇0

∗ < ∞) which satisfies 

(12). 

 
 

Table 2: Optimal 𝑁0
∗ when 𝜔𝐾 = 20. 

Table 1: Optimal 𝑁0
∗ when 𝜔𝐾 = 10. 

 

𝑁∗ 

𝑁∗ 



 

 

𝑇∗ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. NUMERICAL EXAMPLES 
 

We give numerical examples when 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡  and 

𝐺(𝑥) = 1 − 𝑒−𝜔𝑥. Then, for 𝑁 = 1,2, … ,  

 

increases strictly with 𝑁 from 𝜔𝑥/(𝑒𝜔𝑥 − 1) to 1, and 

 

 

 

 

increases strictly with 𝑁  from 𝑄(𝑇)  to 1  and increases 

strictly with 𝑇 from 𝑄(𝑁) to 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 presents optimal 𝑁0
∗  when 𝜔𝐾 = 10  for 𝑐𝐹/

𝑐𝑁  and 𝜆𝑇. We can see that 𝑁0
∗ decreases with 𝑐𝐹/𝑐𝑁 . This 

indicates that if replacement cost 𝑐𝐹  of failure is large, then 

we should replace the unit early to avoid its failure. 

Furthermore, 𝑁0
∗ decreases with 𝜆𝑇.  This indicates that if 

the number of shocks is large, then we should replace early. 

Note that 𝑁0
∗ decreases strictly with 𝜆𝑇 from 𝑁 ∗ for 𝜆𝑇 =

0 to 1. 

Table 2 presents optimal 𝑁0
∗  when 𝜔𝐾 = 20  for 𝑐𝐹/

𝑐𝑁  and 𝜆𝑇. We can see the same tendency with Table 1, and 

𝑁0
∗ is large when 𝜔𝐾 is large.  

Table 3 presents optimal 𝑁0
∗  when 𝜆𝑇 =5 for 𝑐𝐹/𝑐𝑁  

and 𝜔𝐾. This indicates that we should replace the unit early  

when  𝜔𝐾  is small, because 𝜔𝐾  means the expected  

number of damage to failure and the unit fails with a small 

number of shocks. 

Table 4 presents optimal 𝜆𝑇0
∗ when 𝜔𝐾 = 10  for 𝑐𝐹/

𝑐𝑁  and 𝑁. We can see that 𝜆𝑇0
∗ decreases with 𝑐𝐹/𝑐𝑁 . This 

indicates that if replacement cost 𝑐𝐹  of failure is large, then 

we should replace the unit early to avoid its failure. Note that 

λ𝑇0
∗ decreases strictly with 𝑁 from 𝜆𝑇∗ for 𝑁 = 1 to 0. 

Table 5 presents optimal 𝜆𝑇0
∗ when 𝜔𝐾 = 20  for 𝑐𝐹/

𝑐𝑁  and 𝑁. We can see the same tendency with Table 4. Further, 

we can see that 𝜆𝑇0
∗ increases with 𝜔𝐾. This indicates that if 

the expected number 𝜔𝐾 of damage to failure is small, then 

we should replace the unit early to avoid its failure. 

 
CONCLUSONS 

 

We have proposed an extended model of the replacement  

overtime policy in which the unit is replaced at 𝑁 th 

completion of shocks over planned time 𝑇. Further, the units 

fails when the total damage exceeded a prespecified level 

𝐾 .We have obtained the expected cost rates, and discussed 

optimal 𝑇∗ and 𝑁∗ which minimize them. As a future work,  

we should modify this model more realistically for equipment 

management. For example, we could consider maintenance 

Table 4: Optimal 𝜆𝑇0
∗ when 𝜔𝐾 = 10. 

 

Table 5: Optimal 𝜆𝑇0
∗ when 𝜔𝐾 = 20. Table 3: Optimal 𝑁0

∗ when 𝜆𝑇 = 5. 
 

𝑇∗ 



 

 

policies that the equipment is replaced at random time over 

planned time. Another example is that the number of shocks  

over time is given as random variable. These formulations and 

results would be applied to real systems such as management 

projects to develop information system effectively by suitable 

modifications. 
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APPENDIX 
When 𝑄(𝑁) increases strictly with 𝑁 to 1, 

 

 

 

 

 

 

 

 

increases strictly with 𝑁  from 𝑄(𝑁)  to 1  and increases 

strictly with 𝑇 from 𝑄(𝑁) to 1. 

Proof.  First, note that for any 𝑁1 > 0, 

 

 

 

 

 

 

 

 

and 

 

 

 

 

 

 

 

which follows that lim𝑁→∞𝑄(𝑁, 𝑇) = lim𝑇→∞𝑄(𝑁, 𝑇) = 1 

because 𝑁1 is arbitrary. 

Next, because 𝑄(𝑁, 𝑇) is rewritten as 

 

 

 

 

 

 

from 𝑄(𝑁 + 1, 𝑇) −𝑄(𝑁,𝑇) , 

 

 

 

 

 

 

 

 

 

 

which follows that 𝑄(𝑁, 𝑇)  increases strictly with 𝑁  to 

1.Differentiating 𝑄(𝑁, 𝑇) with respect to 𝑇, 

 

 

 

 

 

 

 

which follows that 𝑄(𝑁, 𝑇) increases strictly with 𝑇 to 1. 


