Poster Sessions

Posters will be displayed at the third and fourth floors of the Humanities and Social Building during TJPB 2017 until November 5th 16:00.

Each poster presentation must have at least one author present during the poster session hours according to even or odd numbers.

There are 2 poster sessions:

- o November 4 (Saturday) at **18:30-19:30** (1hr) **Odd** numbers
- o November 4 (Saturday) at 19:30-20:30 (1hr) Even numbers

Vote for Outstanding Poster Awards

Please visit the posters, and discuss the content with presenters. Writing down **3** poster numbers you would prefer for outstanding posters award and drop your ballot in drop box by **20:30**November **4**th.

No.	Title	Presenter	Organization
	Session 1 Environmental respons	ses, Abiotic stresses	
001	The roles of AtR8 long non-coding RNA on plant defense relate with WRKY53 and WRKY70 in Arabidopsis	Li Shuang	Nagoya City University, Japan
002	Investigation on response of selected plants to PAHs-mediated oxidative stress and their mitigation	Wahdatullah Khpalwak	Hiroshima University, Japan
003	Stomatal Response against Sulfur Dioxide	Lia Ooi	Okayama University, Japan
004	Early Temperature-Induced Stomata Efficacy on Eustoma grandiflorum Posture	Md Zohurul Kadir Roni	Ehime University, Japan
005	Mechanisms of cadmium-induced increases of sulfate uptake, translocation and thiol synthesis in <i>Arabidopsis thaliana</i>	Chisato Yamaguchi	Kyushu University, Japan
006	Effects of glycine betaine and raffinose for salt stress in sugar beet	Teruhiro Takabe	Meijo University, Japan
007	The lack of thioredoxin M1 or thioredoxin C in <i>Anabaena</i> sp. pcc 7120 leads to oxidative stress	Frédéric Deschoenmaeker	Tokyo Institute of Technology, Japan
008	Isolation and characterization of an <i>Arabidopsis</i> mutant, <i>ihc1</i> , having abnormalities in ABA-independent CO ₂ signaling in guard cells	Ryoma Tohmori	Kyushu University, Japan
009	Chloroplast accumulation response enhances leaf photosynthesis and plant biomass production	Eiji Gotoh	Kyushu University, Japan
010	Functional study of MSRB8&9	Yu-Hsin Chiu	Academia Sinica,

	第2 DM Fift 中で 日 Turner Accion of Flora Relagion		
No.	Title	Presenter	Organization
			Taiwan
011	Histone acetylation functions in switching and priming the novel survival strategy against drought in <i>Arabidopsis</i> .	Jong-Myong Kim	RIKEN CSRS, Japan
012	Screening of <i>Arabidopsis</i> mutants with low sensitivity to the phosphatidylinositol 4-kinase inhibitor, PAO, that decreases the dynamic PATROL1 movements in stomata	Sho Takahashi	Kyushu University, Japan
013	Isolation and functional analysis of novel cold-induced barley <i>CISP</i> genes	Mengchao Ying	Nagoya City University, Japan
014	Characterization of an Arabidopsis Transcription Factor Involved in Regulation of Purple Acid Phosphatase Genes	Chin-Wen Chang	Saitama University, Japan
015	Duplication of Mitochondrial DnaK and GrpE Genes Increases Adaptability to Diverse Heat Stress Conditions in Arabidopsis	Meng-Ju Hung	Academia Sinica, Taiwan
016	Ca ²⁺ -permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca ²⁺ increase and cold tolerance in Arabidopsis	Na Renhu	University of Tsukuba, Japan
017	Phalaenopsis flowering locus VE regulates floral organ maturation	Hsin-Yu Chuang	Academia Sinica, Taiwan
018	Identification of novel N/CO ₂ -responsive genes by GWAS in <i>Arabidopsis thaliana</i>	Hikaru Watase	Kyushu University, Japan
019	The analysis of gene expression mechanism and physiological function of aldo-keto reductase in tomato	Marina Suekawa	Hiroshima University, Japan
020	Thioredoxin regulates G6PDH activity by changing redox status of OpcA in the nitrogen-fixing cyanobacterium <i>Anabaena</i> sp. PCC 7120	Shoko Mihara	Tokyo Institute of Technology, Japan
021	Arabidopsis LAZY1 family plays key role in gravity signaling within statocytes in gravitropism and in branch angle control of roots and shoots.	Miyo T. Morita	Nagoya University, Japan
022	Short ORFs associated with carbon/nitrogen-nutrient response in <i>Arabidopsis</i>	Ayu Yamamoto	Kyushu University, Japan
023	Functional Analysis of RNA Polymerase III-dependent Non-coding RNA of Rice	Ailizati Aili	Nagoya City University, Japan
024	Impacts of genetic perturbations in photosynthetic redox regulation on plant light stress response.	Takanori Maruta	Shimane University, Japan
025	Mechanism of cell injury induced by a rapid temperature decrease in <i>Saintpaulia</i> sp. leaves.	Miwa Ohnishi	Kobe University, Japan
026	A shortened annual cycle system; a tool for laboratory studies of seasonal phenomena in trees	Yuko Kurita	Ryukoku University, Japan
027	A single seed treatment with reactive oxygen species (ROS) improves growth performance and alleviates abiotic stress in Arabidopsis	Md Mostafa Kamal	Iwate University, Japan
028	Construction of a rapamycin-susceptible strain of the unicellular red alga <i>Cyanidioschyzon merolae</i> for analysis of target of rapamycin (TOR) function	Sousuke Imamura	Tokyo Institute of Technology, Japan
029	Calcium Signals Regulate CBF/DREB1 Expression	Hayato Hiraki	Iwate University,
			AN TOTAL STREET

No.	Title	Presenter	Organization
	dependent on the Temperature Fluctuation in the Field		Japan
030	Novel peptides related to Zinc homeostasis in Arabidopsis thaliana	Yoichiro Fukao	Ritsumeikan University, Japan
031	Contribution of glutathione-dependent dehydroascorbate reductases to ascorbate recycling in <i>Arabidopsis</i> .	Yusuke Terai	Shimane University, Japan
032	Functional analysis of highly induced defensin-like family protein on Zinc deficient condition in <i>Arabidopsis thaliana</i>	Tomoya Ohshita	Ritsumeikan University, Japan
033	How does full nitrogen rescue the plants from phosphate deficiency stress?	Yoshitake Yushi	Tokyo Institute of Technology, Japan
034	Loss of flowering in semiaquatic plant Rorippa aquatica	Shuka Ikematsu	Kyoto Sangyo University, Japan
035	Identification and characterization of the endoplasmic reticulum body in rosette leaves of <i>Arabidopsis</i>	Akiko Nakazaki	Kyoto University, Japan
036	Rice ERF66 and ERF67 in SUB1A-1 pathway for submergence resistance	Meng-Chiao Joseph Ho	Academia Sinica, Taiwan
037	Regulation of high light stress response through interaction of the production site-specific pathways for H_2O_2 signaling	Gen Mitomi	Shimane University, Japan
038	FIN219 and HY5 in <i>Arabidopsis</i> participate in drought and salt stress responses through regulating ERFs levels	Fang-Wen Li	National Taiwan University, Taiwan
039	Characterization of CEP5 and CEPR1 associated with zinc-deficient tolerance in <i>Arabidopsis thaliana</i>	Yuji Yamaguchi	Ritsumeikan University, Japan
040	GTR1, a JA-lle transporter, involves in salt-induced root inhibition in Arabidopsis	Hsin-Yi Kuo	National Taiwan University, Taiwan
041	Hot water seed disinfection affects germination and seedling emergence of Hokkaido rice cultivars in low temperature conditions	Yoshiyuki Sagehashi	National Agriculture and Food Research Organization, Japan
042	A genetic screen for molecular components that modulates specifically in stomatal CO ₂ -signalling pathway	Sakiko Saito	Kyushu University, Fukuoka, Japan
043	The metagenomics of mycorrhiza and ecological adaption in biofuel crop Miscanthus	Yu Chen Wang	National Cheng Kung University, Taiwan
044	Functional Analysis of NAC-type Transcriptional Factors during Tissue Reunion in <i>Arabidopsis</i> flowering stem	Keita Matsuoka	Teikyo University, Japan
045	Effects of low temperature on the ROS accumulation and antioxidant enzyme activities in ice plant <i>Mesembryanthemum crystallinum</i> L.	Wen-Ling Huang	National Chung Hsing University, Taiwan
046	Differential expression of inositol transporter <i>McINT</i> gene families and uptake of <i>myo</i> -inositol under salt treatment in halophyte <i>Mesembryanthemum crystallinum</i>	Cheng Hsun Li	National Chung Hsing University, Taiwan
047	Plant-to-seed signaling is essential for seed development under low-humidity condition	Masatake Kanai	National Institute for Basic Biology, Japan
048	Physiological and molecular responses of Arabidopsis thaliana exposed to technology-critical elements Ga, In	Hsin-Fang Chnag	Academia Sinica, Taiwan

	TALK COPP STOR 15 CV - First State S		
No.	Title	Presenter	Organization
	and TI		
049	Analysis of plant hormone profiles in response to moderate dehydration stress	Kaoru Urano	RIKEN, Japan
050	Non Responsive to Fe Deficiency 2 (NRF2) involved in the regulation of Fe homeostasis in Arabidopsis thaliana	Surjit Singh	Academia Sinica, Taiwan
051	Common Stress Transcriptome Analysis Reveals Functional and Genomic Architecture Differences Between Early and Delayed Response Genes	Chung-Wen Lin	National Cheng Kung University, Taiwan
052	Hydrogen peroxide treatment induces stress memory and enhances chilling tolerance in mung bean.	Yi-Wen Huang	Da-Yeh University, Taiwan
053	Identification and characterization of <i>crf1</i> , <i>Constitutive Response to Fe-deficiency 1</i> involved in the Fe negative regulatory mechanism in Arabidopsis	Reena Sharma	Academia Sinica, Taiwan
054	Uncovering Genes Responsible for Phosphate Uptake Activity by Genome-Wide Association Studies Using Nature Variations of Arabidopsis	Pei-Shan Chien	Academia Sinica, Taiwan
055	Phosphite-mediated phosphate starvation responses modulated by mitochondrial ATP synthesis and sugar metabolism in Arabidopsis	Shang Jye Leong	Academia Sinica, Taiwan
056	The relationship between the autophagy pathway and the phosphate starvation	Bo-Chang Lin	National Tsing Hua University, Taiwan
057	Investigating the crosstalk between the autophagy pathway and phosphate starvation using the <i>Arabidopsis</i> phosphate homeostasis and autophagy mutants	Pei-Yu Wu	National Tsing Hua University, Taiwan
058	Regulation and expression of OsNLA1 required for maintaining phosphate homeostasis in rice	Wen-chien Lu	Academia Sinica, Taiwan
059	Branched chain amino acid metabolism during autophagy process under shading stress and BCAAs starvation in Oryza sativa	Yee Yee Tun	University of Miyazaki, Japan
060	NRT/PTR Family 2.11 (NPF2.11) is involved in abiotic stress in Arabidopsis	Kim Teng Lee	National Taiwan University, Taiwan
061	Organic Acid Transporters Induced in Cluster Roots of White Lupin under Phosphorus Deficiency	Hiroaki Furutani	Hiroshima University, Japan
062	Phosphorylation of a 26S proteasome subunit has a crucial function in DNA damage tolerance	Arakawa Yuta	Tokyo University of Science, Japan
063	Cryopreservation of Snow lotus Suspension Cells which contains high syringin	Mariama A Kujabi	Yuan Ze University, Taiwan
064	Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice	Shuen-Fang Lo	Academia Sinica, Taiwan
	Session 2 Biomembrane, Ion and	solute transporters	
065	ACTPK1, a STY kinase, down-modulates the high-affinity NH ⁴⁺ uptake of rice roots under high NH ⁴⁺ supply	Marcel Beier	Tohoku University, Japan
066	SISWEETa modulates sugar distribution of sink organs in Tomato	Li Hsuan Ho	National Cheng Kung University, Taiwan

No.	Title	Presenter	Organization
110.	A barley HvCNGC2-3, is activated by cAMP and the	T TESCHICI	
067	co-presence of external Na ⁺ and K ⁺ , and permeates Na ⁺ and K ⁺ non-selectively	Maki Katsuhara	Okayama University, Japan
068	Contribution of SULTR2;1 and SULTR3;5 to Root-to-Shoot Translocation of Sulfate	Khamsalath Soudthedlath	Kyushu University, Japan
069	Long-distance signaling in response to Fe-starvation	Kumiko Ikuta	Nagoya University, Japan
070	Identifying Novel Functions of NRT1 Transporters by Systematic Biochemical Approaches	Yi-Chen Lin	Academia Sinica, Taiwan
071	The Functional Characterization of the NRT/PTR Family (NPF) Members in Biotic and Abiotic Stresses in Arabidopsis	Ya-Yun Wang	National Taiwan University, Taiwan
072	High concentration of boric acid rescues growth defect of vitamin B6 mutant	Izumi Aibara	Hokkaido University, Japan
073	A strategy for improving plant growth by manipulating a transporter involved in nitrate remobilization	Kuo-En Chen	Academia Sinica, Taiwan
074	Genome-wide analysis of gene expression regulated by internal nitrate in <i>Arabidopsis thaliana</i>	Yuki Okamoto	Nagoya University, Japan
075	Investigate Function of Sugar Transporters in Rhizome Development of <i>Gastrodia elata</i>	Shu-Ying Hsieh	National Cheng Kung University, Taiwan
076	Identification of the CO ₂ transporters from among the plant aquaporins	Yoshiki Nakahara	Okayama University, Japan
077	Screening and identification of the potential targets involved in the Fe negative regulatory mechanism in Arabidopsis	Jingchi Lo	Academia Sinica, Taiwan
	Session 3 Organelles, Cy	toskeletons	
078	Autophagy for the vacuolar degradation of entire photodamaged chloroplasts	Masanori Izumi	Tohoku University, Japan
079	Chlorophagy selectively eliminates swollen chloroplasts caused by high visible light-damage in Arabidopsis leaves	Sakuya Nakamura	Tohoku University, Japan
080	Identification of novel inner nuclear membrane proteins in plant	Minato Watanabe	Tokyo University of Science, Japan
081	Possible regulation mechanisms of chloroplastic FtsH metalloprotease by protein phosphorylation	Yusuke Kato	Okayama University, Japan
082	Convergent evolution of HMG-box protein in organelle nucleoid	Mari Takusagawa	Kyoto University, Japan
083	Comprehensive analysis of phosphoproteins in thylakoid membranes	Keiji Nishioka	Okayama University, Japan
084	Identification and characterization of molecular players for peroxisome biogenesis and functions based on imaging-based approach	Shoji Mano	National Institute for Basic Biology, Japan
085	Structural analysis of moss plastid peptidoglycan using a metabolic labeling method with click chemistry	Kana Kishimoto	Kumamoto University, Japan
086	Nuclear transcriptome rewiring involving a peptide-exporting ABC transporter on chloroplast envelopes	Kenji Nishimura	Okayama University, Japan

No.	Title	Presenter	Organization
087	ANGUSTIFOLIA mediates the dark-induced nuclear positioning through actin organization in leaf cells of <i>Arabidopsis thaliana</i>	Kosei Iwabuchi	Konan University, Japan
088	Possible role of phosphorylation of chloroplast Ca ²⁺ binding protein CAS in the regulation of stomatal opening	Yuna Uemura	Kyoto Prefectural University, Japan
089	Cross-species complementation assay of macrochloroplast phenotype in moss <i>murE</i> mutant and of albino phenotype in <i>Arabidopsis</i> ones with larch <i>MurE</i> gene	Hiromi Kudo	Kumamoto University, Japan
090	Organelle genomes of a cybrid rapeseed, Brassica napus, SW18, which was produced by an asymmetric cell fusion with a cytoplasmic male sterile radish, Raphanus sativus.	Shungo Yanase	The University of Tokyo, Japan
091	Mitochondrial morphological change during whole plant ageing in <i>Arabidopsis thaliana</i> and <i>Marchantia polymorpha</i> L.	Hajime Sugaya	Tokyo University, Japan
092	A trade-off between growth and defense gene expression is orchestrated by chloroplast and mitochondrial retrograde signalings.	Takaki Murata	Kyoto Prefectural University, Japan
093	VIPP1, a chloroplast membrane integrity-maintaining protein, has GTP-binding and hydrolysis activities in vitro	Norikazu Ohnishi	Okayama University, Japan
094	Mitochondrial mechanosensitive channel MSL1 plays a role in seed germination in <i>Arabidopsis thaliana</i>	Souta Izumida	Kyoto Prefectural University, Japan
095	Polypeptide Transport-Associated Domains of the Toc75 Channel Protein Are Located in the Intermembrane Space of Chloroplasts	Yih-Lin Chen	Academia Sinica, Taiwan
096	Effect of ABA on Chloroplast Division on the Moss, <i>Physcomitrella patens</i>	Prapaporn Pongthai	Hokkaido University, Japan
097	Regulation of plastid protein import through transit-peptide motif alteration	Chiung-Chih Chu	Academia Sinica, Taiwan
	Session 4 Plant-microbe	interaction	
098	Characterization of rice LysM-RLKs involved in mycorrhizal symbiosis.	Hanae Kaku	Meiji University, Japan
099	Root-knot Nematodes Activate Procambium-associated Genes in Arabidopsis Roots	Reira Suzuki	Kumamoto University, Japan
100	Conservation of plant common symbiosis pathway in mycorrhizal symbiosis between <i>Bletilla striata</i> (Orchidaceae) and mycorrhizal fungus	Chihiro Miura	Tottori University, Japan
101	Effective Agrobacterium-mediated transformation methods for gene function analyses in ice plant (Mesembryanthemum crystallinum) cells and seedlings	Hau-Hsuan Hwang	National Chung Hsing University, Taiwan
102	A Gene regulation study of the AtRTNLB4 functions in plant defense response	Fan-Chen Huang	National Chung Hsing University, Taiwan
103	Interactions between wild plants and viruses revealed by RNA-seq	Mari Kamitani	Ryukoku University, Japan

No.	Title	Presenter	Organization
104	Isolation and application of plant growth-promoting bacteria and analysis of plant growth-promotion mechanisms.	Tomonori Nakaoka	Kindai University, Japan
105	The C2 protein encoded by tomato leaf curl Taiwan virus is a pathogenicity determinant that interferes with host DNA methylation machinery	Ya-Han Shen	National Changhua University of Education, Taiwan
106	Characterization of Root-knot Nematode Attractants Released through Seed Coat Mucilage Extrusion	Allen Yi-Lun Tsai	Kumamoto University, Japan
107	Arabidopsis RAB8A, RAB8B, and RAB8D proteins interact with several RTNLB proteins and participate the Agrobacterium tumefaciens infection process	Shin-Fei Chi	National Chung Hsing University, Taiwan
108	Stable pH Suppresses Defense Signaling and is the Key to Enhance <i>Agrobacterium</i> -Mediated Transformation in <i>Arabidopsis</i> Seedlings	Manda Yu	Academia Sinica, Taiwan
109	Next-generation sequencing technologies identify candidate genes for resistance to tomato late blight disease	Kenta Shirasawa	Kazusa DNA Research Institute, Japan
110	Functions of novel effector proteins isolated from plant pathogenic bacteria, <i>Acidovorax avenae</i> , in the host or non-host interactions	Minami Nakamura	Nagahama Institute of Bio-Science and Technology, Japan
111	Metagenomics of Symbiotic Bacteria in Swertia Root of Taiwan	Po-Yi Chen	National Cheng Kung University, Taiwan
112	Distinct pathogenesis and host responses to transient expression of individual genes encoded by tomato leaf curl Taiwan virus	Hui-Yu Hsiao	National Changhua University of Education, Taiwan
113	Attractant for plant parasitic nematode	Morihiro Oota	Kumamoto University, Japan
114	Plant growth-promoting traits of phosphate-solubilizing yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab	Chen yi-ru	National Changhua University of Education, Taiwan
115	Recognition mechanism of CD2-1, C-terminal region of flagellin, mediated by novel pattern recognition receptor in rice	Yugo Imao	Nagahama Institute of Bio-Science and Technology, Japan
116	The Mechanism of Acid Tolerance of <i>Lycopodium</i> cernuum L. Grown in Solfatara Fields.	Takato Saito	Hiroshima University, Japan
117	Molecular mechanism of delayed flowering caused by phytoplasma infection	Shu-Heng Chang	National Chung Hsing University, Taiwan
118	Fine mapping of two quantitative trait loci for bacterial blight resistance in SA0424, a TNG67 mutant, using near isogenic lines	Min-Yu Chiang	National Chung Hsing University, Taiwan
	Session 5 Evolution, Taxonomy, Non-	-model plant, Educati	on
119	Mechanisms of Leaf Morphogenesis in <i>Juncus</i> prismatocarpus	Xiaofeng Yin	The University of Tokyo, Japan
120	Evolution of microRNA827 targeting in the plant kingdom	Su-Fen Chiang	Academia Sinica, Taiwan
121	Early cotyledonary meristem activity and <i>STM</i> expression appears to be ancestral in Lamiales and has	Kanae Nishii	Tokyo Gakugei University, Japan

	Torwa histoy of floot Bulogian		
No.	Title	Presenter	Organization
	diversified in Gesneriaceae		
122	Differential expression of cytokinin biosynthesis <i>IPT</i> genes in non-model Cape Primrose plants	Yun-Yu Chen	University of Edinburgh, United Kingdom
123	Molecular basis of EGT and HGT: How bacterial transgenes express in the eukaryotic genome?	Takayuki Hata	Kyoto Prefectural University, Japan
124	To BE an orchid: B- and E-class MADS-box genes involved in regulating orchid flower development	ZhaoJun Pan	National Taiwan University, Taiwan
125	Establishing transient gene expression and RNA interference as genetic approaches for gene functional analysis in protoplasts of thermogenic skunk cabbage (Symplocarpus renifolius)	Haruhiko Maekawa	Faculty of Agriculture University of Miyazaki, Japan
126	Phylogeography of Paper mulberry: a widely distributed species in China, Taiwan and Indochina	Wenhsi Kuo	Academia Sinica, Taiwan
127	Detailed process of shoot regeneration and optimization of <i>Agrobacterium</i> -mediated transformation in <i>Sinningia speciosa</i>	Yu-Ling Hung	National Taiwan University, Taiwan
	Session 6 Photoreceptors, Phot	oresponses / Clock	
128	The role of auxin in the blue-light-directed twisting of the Arabidopsis leaves	Yuta Otsuka	The University of Tokyo, Japan
129	Bisulfite sequencing analysis of <i>Arabidopsis</i> circadian clock mutants	Yuji Miyazaki	Okinawa Institute of Science and Technology Graduate University, Japan
130	Molecular study of circadian clock with small molecules	Norihito Nakamichi	Nagoya University, Japan
131	Physcomitrella phytochromes modulate alternative RNA splicing through hnRNP-F1 and an exonic splicing silencer.	BouYun Lin	Academia Sinica, Taiwan
132	Biochemical analysis of aureochrome in the raphidophycean alga <i>Chattonella antiqua</i>	Fumio Takahashi	Ritsumeikan University, Japan
133	Functional analysis of auxin transport, biosynthesis and signaling in root phototropism of Arabidopsis	Taro Kimura	Niigata Universty, Japan
134	Time-dependent manner of the involvement of blue light and cryptochrome in cold acclimation process	Hiroyuki Imai	Iwate University, Japan
135	A small molecule changing circadian period to 48 h	Takashi Nonoyama	Nagoya University, Japan
136	Absorption spectral properties of phyC activated with blue-shifted red light are conserved among angiosperms	Shizue Yoshihara	Osaka Prefecture University, Japan
137	Mechanistic studies of light-enhanced translation in de-etiolating Arabidopsis seedlings	Guan-Hong Chen	Academia Sinica, Taiwan
138	Characterization of circadian rhythms of a genus of duckweed plants(<i>Wolffiella</i>).	Minako Isoda	Kyoto University, Japan
139	BELL-LIKE HOMEODOMAIN 1 Functions as an Extragenic Suppressor of FIN219/JAR1 in Regulation of <i>Arabidopsis</i> Seedling Development Under Far-Red Light	Shao-li Yang	National Taiwan University, Taiwan

No.	Title	Presenter	Organization
140	Processing bodies regulate selective translation in photomorphogenic Arabidopsis	Geng-Jen Jang	Academia Sinica, Taiwan
141	Correlation between the critical day-length and the period of circadian clock in a Japanese short-day duckweed	Tomoaki Muranaka	Kyoto University, Japan
142	Non-tissue autonomous regulation of auxin-responsive genes in the shade avoidance response.	sujung kim	Kyoto University, Japan
143	The regulatory role of plant-specific transcription factor family BASIC PENTACYSTEINE in <i>Arabidopsis</i> circadian clock	Huang-Lung Tsai	National Taiwan University, Taiwan
144	Gene expression analysis of microbial rhodopsin-like genes in marine cryptomonad	Masae Konno	Nagoya Institute of Technology, Japan
145	Phytochrome-Interacting Factor 14 (OsPIF14) may modulate root curling through JA signaling	André Cordeiro	Instituto de Tecnologia Química e Biológica, Av. da República
146	Phytochrome interacts with heterogeneous nuclear ribonucleoprotein to silence prespliceosome activity and modulate alternative splicing	ChuehJu Shih	Academia Sinica, Taiwan
147	Analysis of the regulation of leaf senescence by plant photoreceptors	Toshiaki Kozuka	Hiroshima University, Japan
	Session 7 Plant hormones / Sign	aling molecules	
148	Transcriptome analysis of auxin responses in rice coleoptile under submergence	Yu-Sian Wu	National Chung Hsing University, Taiwan
149	Development of chemical regulators of gibberellin signal	Kai Jiang	The University of Tokyo, Japan
150	Elucidation of a novel mechanism of phototropism in pea epicotyls regulated by photo-induced growth inhibitors	Megumi Tsuzuki	University of Tsukuba, Japan
151	An ancestral gibberellin biosynthetic pathway in the moss	Sho Miyazaki	Tokyo University, Japan
152	Manipulation of cellular auxin distribution by chemical biology approach	Ken-ichiro Hayashi	Okayama University of Science, Japan
153	A model for the molecular mechanism of vascular development in the haustorium of the parasitic plant <i>Cuscuta campestris</i> .	Yuki Kaga	Tohoku University, Japan
154	Structural basis of the self-recognition in <i>Brassica</i> self-incompatibility	Chiho Masaka	NARA Institute of Science and Technology, Japan
155	Functional analysis of CLE 16 and CLE 17 in Arabidopsis	Chie Shimaoka	Kumamoto University, Japan
156	A study on <i>CLE1</i> to <i>CLE7</i> meditated environmental signals in <i>Arabidopsis thaliana</i>	Dichao Ma	Tokyo University, Japan
157	Strigolactone and Brassinazole Coordinately Induce Light-Adapted Development in Arabidopsis thaliana Depending on STH7 Function	Jutiporn Thussagunpanit	The University of Tokyo, Japan
158	Detection of cytoplasmic splicing by BiFC-based reporter in Arabidopsis	Kazuki Tabara	Osaka Prefecture University, Japan

No.	Title	Presenter	Organization
159	Analysis of the mechanisms of action of a compound regulating both auxin and brassinosteroid signal transductions	Naiyanate Jaroensanti Tanaka	The University of Tokyo, Japan
160	Elucidation of the molecular mechanisms controlling flowering in the stem parasitic plant <i>Cuscuta campestris</i> .	Moegi Kato	Tohoku University, Japan
161	Tissue-specific analysis of gene expression and endogenous phytohormone in tissue-reunion process of <i>Arabidopsis</i> incised flowering stem using laser microdissection.	Kazuki Yamada	Teikyo University, Japan
162	A tetraspanin gene controlled various plant developmental processes by regulating the auxin response in Arabidopsis thaliana	Chen WeiHao	National Chung Hsing University, Taiwan
163	A Gene ANTHER DEHISCENCE REPRESSOR (ADR) Controls Male-sterility by Suppressing the Jasmonate Biosynthetic Pathway and Anther Cell Wall Thickening in Peroxisomes of Arabidopsis	Shu-Yu Dai	National Chung Hsing University, Taiwan
164	The NAC-like gene AtNACL14 Controls Plant Growth and Development by Regulating Gibberellin Metabolism Pathway in Arabidopsis	Hong-le Chen	National Chung Hsing University, Taiwan
165	Functional characterization of the <i>fas</i> operon involved in synthesis of cytokinins in <i>Rhodococcus fascians</i> .	Mio Takahata	Nagoya University, Japan
166	Parasitic plant-host interactions control endoreduplication-mediated cell expansion during haustorial development of the holoparasitic plant, <i>Cuscuta campestris</i>	Hideki Narukawa	Tohoku University, Japan
167	DELLA-GAF1 Complex is a Main Component in Gibberellin Feedback Regulation of GA20ox2 in Arabidopsis	Jutarou Fukazawa	Hiroshima University, Japan
168	An adenylyl cyclase gene, MpCAPE, specifically expresses in the male sexual organ antheridium with its maturation	Chiaki Yamamoto	Ritsumeikan University, Japan
169	Isolation of novel transcription factors which related to brassinosteroid response.	Reika Taguchi	Saitama University, Japan
170	Do strigolactones regulate both shoot branching and rhizome formation in <i>Bambusa multiplex</i> Raeusch?	Mami Otake	Toyo University, Japan
171	Effects of phytohormone on the antheridium and prothalli formation in <i>Ligodium japonicum</i> .	Natsumi Ohishi	Teikyo University, Japan
172	The roles of the NIN-Like Protein 7 (NLP7) and NLP6 in nitrate signaling in Arabidopsis thaliana	Yu Hsuan Cheng	Academia Sinica, Taiwan
173	FIN219/JAR1 Participates in Shade Signaling Likely Through Interaction With Phytochrome B in <i>Arabidopsis</i>	Kai-Chun Peng	National Taiwan University, Taiwan
174	Potential agonists of ethylene response uncovered by a chemical screening strategy based on yeast two-hybrid system	Wen-Ju Hsieh	National Chung Hsing University, Taiwan
175	Interference with protein-protein interaction of the ETR1-CTR1-EIN2 complex induces ethylene response in Arabidopsis thaliana	Hao-Ting Xu	National Chung Hsing University, Taiwan

No.	Title	Drocontor	Organization
NO.		Presenter	Organization
176	Oxylipin signatures associated with the biosynthesis of chemical defense compound momilactones in the moss <i>Hypnum plumaeforme</i>	Miyu Teruya	The University of Tokyo, Japan
177	Possible Involvement of Endoplasmic Reticulum Dynamics in Stress-Induced Abscisic Acid Production in Arabidopsis Leaves	Yiping Han	Hiroshima University, Japan
178	Modification and evaluation of strigolactone mimics for selective effects on rice tillering or root paracitic plants seed germination	Ikuo Takahashi	The University of Tokyo, Japan
179	<i>D27</i> , a strigolactone biosynthetic gene is required for adaptation to sulfate ion deficiency	Masato Shindo	Toyo University, Japan
180	Arabidopsis LAZY1 family mediates gravity signaling in branch angle control of roots through the interaction with RLD family.	Masahiko Furutani	Nagoya University, Japan
181	Identification of small molecule inhibitors of Arabidopsis EIN3	Kung-Ming Liu	National Chung Hsing University, Taiwan
182	Unveiling the Roles of NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER FAMILIY (NPF) in Arabidopsis Brassinosteroid Responses	Guan-Yu Louh	National Taiwan University, Taiwan
183	Functional characterization and comparison of Rice GA 2-oxidase gene family	Kun-Ting Hsieh	Academia Sinica, Taiwan
184	Charactaristics of strigolactone-deficient <i>slccd8</i> mutants in Micro-Tom	Shoko Hasegawa	Toyo University, Japan
185	Increased MGDG/DGDG ratio induces JA over-production	Chun-Wei Yu	Academia Sinica, Taiwan
186	Brassinosteroid enhances phosphorylation level of the penultimate residue of plasma membrane H ⁺ -ATPases.	Takahashi Koji	Nagoya University, Japan
187	Auxin regulates adventitious shoot formation on internodal segments in ipecac	Imari Koike	Toyo University, Japan
	Session 8 Membrane traffic	king, Cell walls	
188	Quantitative imaging approaches to mechanisms of cell wall construction using <i>Arabidopsis</i> mesophyll protoplasts	Hiroaki Kuki	Tohoku University, Japan
189	Discovery and biochemical characterization of rhamnosyltransferase involved in pectin biosynthesis in Arabidopsis thaliana	Yuto Takenaka	Ritsumeikan University, Japan
190	Assays for glycosyltransferases involved in biosynthesis of pectic rhamnogalacturonan I in plant cell wall	Kenta Yagyu	Ritsumeikan University, Japan
191	Preparation of UDP-apiose, a donor substrate of a glycosyltransferase involved in pectin biosynthesis	Tae Fujimori	Ritsumeikan University, Japan
192	Transcriptome analysis of tension wood formation using in-pot cultured poplar	Minoru Kubo	NARA Institute of Science and Technology, Japan
193	Analysis of Arabidopsis mutants defective for VND7-induced xylem vessel cell differentiation	Pawittra Phookaew	NARA Institute of Science and Technology, Japan

Vo.	Title	Presenter	Organization
194	NAC transcription factors VNS proteins regulate tracheid formation in <i>Pinus taeda</i> .	Nobuhiro Akiyoshi	NARA Institute of Science and Technology, Japa
195	Vacuolar Sorting Receptors Are Involved in Cuticle Layer Formation in Arabidopsis	Tadashi Kunieda	Konan University Japan
196	Qa-SNARE SYP3 is required for male and female gametogenesis in <i>Arabidopsis thaliana</i> .	Kazuo Ebine	National Institute for Basic Biology Japan
197	Exploring the function of cellulose endotransglucosylase (CET) in plants	Mikami Shingo	Tohoku Universit
198	Analysis of autophagy during spermiogenesis in Marchantia polymorpha	Takuya Norizuki	National Institute for Basic Biology Japan
199	Root cap-specific pectin methylesterase promotes cell detachment of the outermost cell layer.	Maeda Kazuki	Kyoto University Japan
200	Cell-specific redirection of a membrane trafficking pathway led to acquisition of lineage-specific organelles during land plant evolution	Takehiko Kanazawa	National Institute for Basic Biology Japan
201	Galacturonosyltransferase Mutations Reduce Boron Requirement by Maintenance of Rhamnogalacturonan-II Crosslinking Rate in Arabidopsis thaliana	Hiroya Funakawa	Hokkaido University, Japar
202	The Coiled-Coil Protein MAG3 is Involved in Protein Transport at the Endoplasmic Reticulum-Golgi Interface	Junpei Takagi	Tokyo University Japan
203	Functional analysis of a novel Arabidopsis ARF GAP protein	Masaki Takeuchi	Tokyo University Japan
Ses	sion 9 Photosynthesis, Environmental respons	se of photosynthesis	and respiration
204	Overestimation of intercellular CO ₂ concentration in leaves with open stomata	Jun Tominaga	Hiroshima University, Japan
205	Newly isolated P23k homologue is responsive to sugar transport and metabolismin <i>Brachypodium distachyon</i>	Taode Bilige	Nagoya City University, Japa
206	Isolation and characterization of photosystem I ssembly apparatus	Yuichiro Takahashi	Okayama University, Japa
207	Effects of overproduction of Rubisco activase on Rubisco content in rice The NDH DSL supercomplex formation is triggered.	Mao Suganami	Tohoku Universit
208	The NDH-PSI supercomplex formation is triggered during the NDH assembly steps mediated by CRR3 Arabidopsis thaliana <i>FLO2</i> is involved in efficiency of	Yoshinobu Kato	Kyoto University Japan
209	photoassimilate translocation, which associates with leaf growth and aging, yield of seed, and seed quality.	Miho Kihira	Tokyo University Science, Japan
	Identification of two chemical compounds that	Fumiyoshi Myouga	RIKEN CSRS, Japa
210	adversely affect the photosynthetic electron transport systems in Arabidopsis.	, , ,	
210 211		Ting-Hung Lin	Academia Sinica Taiwan

No.	Title	Presenter	Organization
	operon restore photoautotrophic growth of cytochrome b ₅₅₉ mutants in the cyanobacterium <i>Synechocystis</i> sp. PCC6803		Taiwan
213	Deficiency of the Stroma-lamellar Protein LIL8/PSB33 Affects the Dynamics of Light-harvesting Complexes and Energy Transfer around Photosystem I in Arabidopsis	Ryouichi Tanaka	Hokkaido University, Japan
214	The role of Calcium Oxalate Crystals in Alarm Photosynthesis.	Christos Chasapis	FORTH / ICE-HT, Hellas
215	Photoprotection mechanisms of the drought-tolerant Jatropha curcas plant	Helena Sapeta	Hokkaido University, Japan
216	Atmospheric CO ₂ concentration and N availability are mutually interacted to maintain the balance of two photosystems in mature leaves of rice plants	Hiroshi Ozaki	Tokyo University of Pharmacy and Life Sciences, Japan
217	The relationship between histone modification and alternative splicing in <i>Physcomitrella</i>	Wang Jainn-Zang	Academia Sinica, Taiwan
218	Regulation of β-carotene hydroxylase gene expression by the light intensity and quality in <i>Arabidopsis</i>	Satomi Takeda	Osaka Prefecture University, Japan
	Session 10 Vegetative	e growth	
219	Excess pyrophosphate within guard cells delays stomatal closure	Mariko Asaoka	Tokyo Gakugei University, Japan
220	A genetic approach revealed a key driving role of IBA derived auxin in Class II CCE in <i>fugu5</i>	Hiromitsu Tabeta	Tokyo Gakugei University, Japan
221	Excess PPi in <i>fugu5</i> mutant triggers developmental defects cell-autonomously	Shizuka Gunji	Tokyo Gakugei University, Japan
222	Mechanical properties underlying flowering stem organogenesis: Genetic, histological approaches and future prospects	Ali Ferjani	Tokyo Gakugei University, Japan
223	KARAPPO encoding RopGEF is critical for the gemma development in the liverwort Marchantia polymorpha.	Takuma Hiwatashi	Kobe University, Japan
224	Novel rRNA processing factor APUM24 is key of nucleolar stress and sugar response in Arabidopsis thaliana	Shugo Maekawa	The University of Tokyo, Japan
225	Analysis of leaf shape variation for Japanese traditional leafy vegetables Mizuna and Mibuna (cultivars of <i>Brassica rapa</i> subsp. <i>nipposinica</i>) by genetic analysis and survey of historical literature.	Yaichi Kawakatsu	Kyoto Sangyo University, Japan
226	Functional characterization of MpbHLH40 in gemma dormancy of a liverwort Marchantia polymorpha	Mikako Yoshikawa	Kobe University, Japan
227	Analysis of transcription factor that regulates plant cell totipotency in Arabidopsis	Tsubasa Yamagata	Saitama University, Japan
228	A trihelix transcription factor GTL1 is the negative regulator for root hair growth	Michitaro Shibata	RIKEN, Japan
229	Exploration of genes regulating vegetative propagation in <i>Rorippa aquatica</i>	Rumi Amano	Kyoto Sangyo University, Japan
230	Analysis of the initiation of somatic embryogenesis in Arabidopsis shoot apical tip	Satoshi Kadokura	Tokyo University of Science, Japan
231	A unique microtubule structure regulating the phloem	Kaori Furuta	NARA Institute of

No.	Title	Presenter	Organization
	cell differentiation in Arabidopsis		Science and Technology, Japan
232	Non canonical splicing depending on <i>DROL1</i> is required for the repression of seed maturation genes after germination in <i>Arabidopsis</i>	Takamasa Suzuki	Chubu university, Japan
233	Identification of a receptor-like protein kinase gene <i>ONION4</i> required for epidermis development in rice	Yukihiro Ito	Tohoku University Japan
234	Nitrogen Utilization Efficiency of Arabidopsis Natural Variants	Shanhua Lin	Academia Sinica, Taiwan
235	Search for pathways to increase post mitotic cell expansion in leaf cells of Arabidopsis angustifolia3 mutant	Kazune Ezaki	Tokyo University, Japan
236	Promotion of the Utilization of Proteins in the Rhizosphere by Overexpression of Aspartic Protease in <i>Arabidopsis thaliana</i>	Tatsuro Hamada	Ishikawa Prefectural University, Japan
237	Identification and molecular characterization of gene responsible for <i>bagel3</i> mutantion in <i>Arabidopsis thaliana</i>	Amit Kumar Dutta	Shimane University Japan
238	Temperature stress differentially modulates transcription in shoot apical meristem of heat-tolerant and heat-sensitive broccoli inbred lines during floral head formation	Hao-Jen Huang	National Cheng Kung University, Taiwan
	Session 11 Cell/cycle/C	ell division	
239	Analysis of cohesin interaction factor in <i>Arabidopsis</i> thaliana	Takayoshi Suzuki	Tokyo University o Science, Japan
240	Functional analysis of HR0109 transcription factor related to plant cell patterning	Mikiya Takahashi	Saitama University Japan
241	Establishment of cell cycle tracking line in Arabidopsis	Tamako Yamaoka	Tokyo University o Science, Japan
242	A Critical Role of ANAC082 as a Ribosomal Stress Response Mediator Leading to Growth Defects and Developmental Alterations in Arabidopsis	Iwai Ohbayashi	Tokyo Gakugei University, Japan
243	Localized cell proliferation and growth regulate root vascular bundle cell patterning.	Motohiro Fujiwara	Osaka University, Japan
244	ASHH2 controls Arabidopsis shoot regeneration through photosynthesis/light and glucose metabolism pathways	Yuki Katsuyama	Tokyo University o Science, Japan
245	Regulatory mechanism of interphase centromere distribution in <i>Arabidopsis thaliana</i>	Tomoe Yamashita	Tokyo University of Science, Japan
246	Functional analysis of proper centromere distribution in <i>Arabidopsis thaliana</i>	Yuka Oko	Tokyo University of Science, Japan
	Mutations in 26S proteasome subunits cause tuberous	Takuya Sakamoto	Tokyo University of Science, Japan
247	root formation under the stress condition in Arabidopsis thaliana		Science, Japan
247		Ryuichi Nishihama	Kyoto University, Japan

No.	Title	Presenter	Organization	
	the unicellular green alga Chlamydomonas reinhardtii		Taiwan	
Ses	Session 12 Transcriptional and post-transcriptional regulation, Epigenetic regulation,			
	Systems biology, Protein modifica	tion and degradation		
250	Distinct roles of histone chaperones of NAP1 in plant during chromatin assembly	Zhao Xue Yang	Nagoya City University, Japan	
251	Massive identification of promoter switching in Arabidopsis and rice	Kazutaka Kusunoki	Gifu University, Japan	
252	Autophosphorylation Affects Substrate-Binding Affinity of Tobacco Ca ²⁺ -Dependent Protein Kinase1	Takeshi Ito	Hiroshima University, Japan	
253	<i>In vitro</i> analysis of light-dependent transcription from plant nuclear encoded gene	Ayaka Ido	Nagoya City University, Japan	
254	AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) transcription factors repress petiole elongation	David Favero	RIKEN, Japan	
255	Biochemical characterization of microRNA precursor processing by Dicer-Like 1 in Arabidopsis	Rikako Hirata	Osaka Prefecture University, Japan	
256	Two-step proteolytic processing for activation of bZIP28, an Arabidopsis membrane-bound transcription factor	Yuji Iwata	Osaka Prefecture University, Japan	
257	Analysis of timing for activation of the imprinted <i>FWA</i> gene during female gametogenesis in <i>Arabidopsis</i> thaliana	Ishie Maki	Yokohama City University, Japan	
258	Nutrient deficiency affects Dicer activities, post-transcriptional gene silencing and virus propagation in plants	Toshiyuki Fukuhara	Tokyo University of Agriculture and Technology, Japan	
259	Exploration of transcription factor binding sites on the promoter region of zinc responsive genes in <i>Arabidopsis thaliana</i>	Ai Oozawa	Ritsumeikan University, Japan	
260	TARPs regulate developmental gene expression via siRNA-transposon modules	Takahiro Hamada	Tokyo University, Japan	
261	Genomic dissection and prediction of transcriptome dynamics under field conditions	Atsushi Nagano	Ryukoku University, Japan	
262	Analysis of DNA demethylase mutants in rice	Yuichi Fukuda	Yokohama City University, Japan	
263	Arabidopsis trichome pattern as a consequence of the coordination of the multiple gene regulatory networks	Yuko Toyama	Tokyo University of Science, Japan	
264	The interaction between DCL3/4 enzyme activities and pigmentation pattern of petal.	Midori Tabara	Tokyo University of Agriculture and Technology, Japan	
265	AS-seq Profiles of Three Sex-Related Loci on the 3 rd Whorl of Different Sex Types of <i>Carica Papaya</i> L.	Hui Jun Lin	National Pingtung University of Science and Technology, Taiwan	
266	The histone demethylase JMJ28 regulates flowering time and transposon silencing in <i>Arabidopsis</i> .	Sun Hua-Chung	National Taiwan University, Taiwan	
267	Network analysis of a transcription factor in the liverwort, Marchantia polymorpha, provides insights into the evolution of gene	Haruka Arai	Tokyo University of Science, Japan	

No.	Title	Presenter	Organization
	regulatory networks.		
268	HISTONE DEACETYLASE6 Acts in Concert with Histone Methyltransferases SUVH4, SUVH5, and SUVH6 to Regulate Transposon Silencing	Ready Tai	National Taiwan University, Taiwan
269	Analysis of the rice FLO2 complex that may regulate the productivity of seed storage substances	Rintaro Suzuki	Tokyo University o Science, Japan
270	LDL1 and LDL2 interact with CCA1/LHY and regulate the circadian clock central oscillators in <i>Arabidopsis</i>	Fu-Yu Hung	National Taiwan University, Taiwar
271	The Activity and Function of Histone Deacetylase 15 Are Negatively Regulated by Phosphorylation in Arabidopsis	Yi-Tsung Tu	National Taiwan University, Taiwar
272	Identification and functional study of tomato SIMYB15 transcription factor	Chun-Chi Hsia	Fu Jen Catholic University, Taiwar
273	Developmental- and tissue-specific expression of NbCMT3-2 encoding a chromomethylase in Nicotiana benthamiana	Yu Wen Jing	National Changhus University of Education, Taiwar
274	Alternative Splicing Influences The Transcript Diversity in Early Photomorphogenic Growth	Sim Lin Lim	Academia Sinica, Taiwan
275	Acquisition of shoot regenerative competency is regulated by histone demethylation in <i>Arabidopsis</i>	Hiroya Ishihara	Tokyo University of Science, Japan
276	Two ER-bound transcription factors bZIP17 and bZIP28 jointly determine plant root elongation and cell growth genes expression in <i>Arabidopsis thaliana</i> .	June-Sik Kim	RIKEN CSRS, Japan
277	Study of the Proteolytic Processing of Pathogenesis – Related Protein 1 (PR1) into a Bioactive peptide in Arabidopsis thaliana	Hung-Yu Wang	National Taiwan Ocean University Taiwan
278	Analysis of an epigenetic regulator involved in tissue variation of shoot regeneration competency in <i>Arabidopsis thaliana</i>	Toyoda Yuma	Tokyo University of Science, Japan
279	The Roles of Histone Deacetylase for Greening and Shoot Formation in <i>Arabidopsis de novo</i> Organ Regeneration	Haruka Temman	Tokyo University of Science, Japan
280	A CCR4 association factor 1, OsCAF1B, involves in mRNA poly(A) tail shortening and cold tolerance mechanisms in rice	Jhen-Cheng Fang	National Central University, Taiwa
281	Live cell imaging of histone modification and chromatin dynamics in plants	Sachihiro Matsunaga	Tokyo University of Science, Japan
282	Light-mediated seedling development regulated by AtJP1, a histone H3K4 demethylase, in Arabidopsis thaliana	Md. Torikul Islam	Academia Sinica Taiwan
283	Wobble U34 modification of plant cytosolic tRNAs and their possible effects on leaf morphogenesis	Yumi Nakai	Osaka Medical College, Japan
284	Evolutionary conservation of inductive expression mechanisms on the phytoalexin biosynthetic gene cluster in <i>Oryza</i> family	Shiho Tomiyama	Tokyo University Japan
285	A metabolomic study of the salinity effect on tomato (Solanum lycopersicum)	Georgia Tooulakou	FORTH / ICE-HT, Hellas
286	Seasonal analysis of genome-wide DNA methylation in	Tasuku Ito	Kyoto University

No.	Title	Presenter	Organization
	natural population of perennial Arabidopsis halleri		Japan
287	A Rice Metallothionein Transcriptional Enhancer Confers Sugar Responsiveness and Significantly Enhances the Act1 Promoter Activity for the Production of Human Fibroblast Growth Factor 1 in Transgenic Rice Cell	Peng-Wen Chen	National Chiayi University, Taiwan
288	Characterization of graft-transmissible microRNAs in Solanaceous species	Shu-Wen Lai	Academia Sinica, Taiwan
289	DCL2- and RDR6-dependent silencing of <i>SMXL4</i> and <i>SMXL5</i> in Arabidopsis <i>dcl4</i> mutants causes defective phloem transport and carbohydrate over-accumulation	Yu-Yi Wu	Academia Sinica, Taiwan
290	Identification of <i>Arabidopsis thaliana</i> genes with high and low levels of expression variation by comprehensive transcriptional analysis	Kohei Negishi	Tokyo University of Science, Japan
291	Gene expression variation influences the regularity of trichome patterns in <i>Arabidopsis thaliana</i> .	Shotaro Okamoto	Tokyo University of Science, Japan
292	The role of a DEAD-box like RNA helicase induced by cold stress involving in rice mRNA splicing	Huang Tian Sheng	National Central University, Taiwan
293	Global Analysis of Truncated RNA Ends Reveals New Insights into Ribosome Stalling in Plants	Wen-Chi Lee	Academia Sinica, Taiwan
294	Examine molecular regulation of SWEET2 function in Arabidopsis.	Ya-Fen Chan	National Cheng Kung University, Taiwan
295	Identification of full-length splicing variants involved in Arabidopsis photomorphogenic development	Chun-Kai Huang	Academia Sinica, Taiwan
296	Transcriptional and post-transcriptional regulation of Arabidopsis in response to iron deficiency	I-Chun Pan	National Chung Hsing University, Taiwan
297	Protease activities in rice suspension cells for expression of human transcription factor OCT4	David Marpaung	Yuan Ze University, Taiwan
298	Global analysis of small RNAs and their targets for regulatory network controlling in floral symmetry in <i>Sinninigia speciosa</i>	Ya-Chi Nien	National Taiwan University, Taiwan
299	Knockdown of a Transcription Repressor, <i>OsMYBS2</i> , to Increase Recombinant Protein Production Driven by $\alpha Amy3$ Promoter in Rice Suspension Cultured Cells	Desyanti Sinaga	Yuan Ze University, Taiwan
300	A novel gene in C_{28} isoprenoid biosynthesis in Solanaceae	Eva Knoch	RIKEN Center for Sustainable Resource Science, Japan
	Session 13 Reproductive gro	wth, Flowering	
301	Mutant panels of diploid and teteraploid wheats developed by heavy-ion beam mutagenesis and their application for genetic research	Koji Murai	Fukui Prefectural University, Japan
302	Identification of sex-determination gene in <i>Asparagus</i> officinalis	Kohji Murase	The University of Tokyo, Japan
303	PHD finger protein aHiTAP1 is a novel flowering regulator of <i>Arabidopsis</i> .	Yuri Yokoyama	Nagoya City University, Japan

		Taxwas No. boy of Plant Bullogate	
No.	Title	Presenter	Organization
304	Comparison of Cell Proliferation Control between Leaves and Floral Organs in Arabidopsis	Ayaka Kinoshita	The University of Tokyo, Japan
305	Intracellular targeting of plant mobile mRNA to plasmodesmata for cell-to-cell movement	Kai-Ren Luo	Academia Sinica, Taiwan
306	Functional Analysis of Tomato Flowering Genes of FT-clade.	Chie Moriya	Okayama Prefecture, Japan
307	Analysis of <i>SNB1</i> transcription factor that induces parthenocarpy	Hibari Hayashi	Saitama University, Japan
308	Identification and characterization of the novel pollen-stigma recognition factors for unilateral incompatibility in <i>Brassica rapa</i> .	Yoshinobu Takada	Tohoku University, Japan
309	Evolutionarily conserved MYB transcription factors regulate female differentiation in land plants	Tetsuya Hisanaga	NARA Institute of Science and Technology, Japan
310	Cytosolic phosphoglucose isomerase is essential for embryogenesis and microsporogenesis in <i>Arabidopsis</i>	Hung-Chi Liu	Academia Sinica, Taiwan
311	Interaction of WRKY63 with HISTONE DEACETYLASE6 in flowering time control in <i>Arabidopsis</i>	Pei-Yu Lin	National Taiwan University, Taiwan
312	Whole genome SNP-INDEL assay of Phalaenopsis orchidsto screen candidate genes related to mutant flower traits	Yi Hui Lee	National Pingtung University of Science and Technology, Taiwan
313	Iron deficiency disrupts tapetum function to cause reduction of viable pollen	Tzu-Hsiang Huang	Academia Sinica,
314	The role of MOS4 in flowering time regulation in <i>Arabidopsis</i>	Yu Sung-yen	National Taiwan University, Taiwan
315	Establishment of systems to study transcriptional, epigenetic and mitochondrial regulation in tapetum during pollen development	Hsiu-chen Chen	Academia Sinica, Taiwan
316	Development of transgenic plants to visualize cytokinin signaling in rice	Moeko Sato	Yokohama City University, Japan
317	An L-arabinokinase activity of CAP1 required for pollen development in rice	Kenji Ueda	Akita Prefectural University, Japan
318	A conserved genetic pathway CDF-GI-FKF determines photoperiodic growth-phase transition in the liverwort <i>Marchantia polymorpha</i> .	Yoshihiro Yoshitake	Kyoto University, Japan
319	The endoplasmic reticulum-localized dolichol kinase AtDOK1 is involved in flowering time control	Yueh Cho	Academia Sinica, Taiwan
320	A long non-coding RNA module that links sex chromosomes to sex differentiation in the liverwort Marchantia polymorpha	Keitaro Okahashi	Kyoto University, Japan
321	A pair of non-specific phospholipases C, NPC2 and NPC6, involved in gametophyte development and glycerolipid metabolism in Arabidopsis	Hai Anh Ngo	Academia Sinica, Taiwan
322	Synergid cell controls the destination of sperm cell discharge.	Daichi Susaki	Yokohama City University, Japan
323	Possible contribution of a paternally expressed AP2-type transcription factor to early zygotic development in rice	Md Hassanur Rahman	Tokyo Metropolitan University, Japan

No.	Title	Presenter	Organization		
	Session 14 Primary metabolism, Secondary metabolism				
324	The mechanisms underlying growth promotion in chitin-treated plants	Hironori Kaminaka	Tottori University, Japan		
325	Nitrate may regulate <i>de novo</i> biosynthesis of NAD ⁺ in Arabidopsis	Saito Moriaki	The University of Tokyo, Japan		
326	Functional analysis of the NIN-like protein family for transcription factors responsible for nitrate response in Arabidopsis	Okitsu Takayuki	The University of Tokyo, Japan		
327	Spatial distribution of glucosinolates in the inner region of the <i>Arabidopsis</i> leaf	Tomomi Ichinose	Kyushu University, Japan		
328	Coordination of sulfur metabolism responding to the sulfate availability in the environments	Akiko Maruyama- Nakashita	Kyushu University, Japan		
329	The Role of Chlorophyll Dephytylase (CLD) in Tocopherol Biosynthesis	Yao-Pin Lin	Academia Sinica, Taiwan		
330	Glutamine-induced Repression of a High-affinity Nitrate Transporter Gene Promoter in <i>Arabidopsis</i>	Pengcheng Guo	The University of Tokyo, Japan		
331	The importance of phosphatidylglycerol (PG) on photosynthesis and root development in <i>Arabidopsis thaliana</i>	Ying-Chen Lin	Academia Sinica, Taiwan		
332	Metabolic Analysis of Primary Metabolomic Pathways during Xylem Vessel Cell Differentiation	Abigail Loren Uy	NARA Institute of Science and Technology, Japan		
333	Idioblast and laticifer cells play important roles in alkaloid biosynthesis in <i>Catharanthus roseus</i>	Kotaro Yamamoto	John Innes Centre, United Kingdom		
334	Tissue specific transcriptome analyses of Asian Lacquer tree	Yoko Ishizaki	Kyoto Prefectural University, Japan		
335	Molecular evolution of biosynthetic pathway of lysine-derived alkaloids	Mami Yamazaki	Chiba University, Japan		
336	A dual-repeat motif is crucial to the promoter activity of <i>Geranyl Diphosphate Synthase</i> for monoterpene biosynthesis in <i>Phalaenopsis</i> orchids	Yu-Chen Chuang	National Cheng Kung University, Taiwan		
Ses	sion 15 Ecophysiology, Bioresources, Emergin	g technologies, Crop a	and Agriculture		
337	MutMapPlus Identified Novel Mutant Alleles of a Rice Starch Branching Enzyme IIb Gene for Fine-tuning of Cooked Rice Texture.	Hiromoto Yamakawa	National Agriculture and Food Research Organization, Japan		
338	Different features of field cold acclimation between deciduous and evergreen broad-leaved trees	Ayano Sasaki	Iwate University, Japan		
339	The effect of polyphenol oxidase activity and tea making process on tea infusion color.	Chung-Tse Chen	National Cheng Kung University, Taiwan		
340	Genetic analysis of the large grain mutant found in transposon-tagged lines of rice	Wan-Yi Chiou	Okayama University, Japan		
341	Application of SaCas9 and FnCpf1 for genome editing in plants	Masafumi MIkami	National Agriculture and Food Research Organization, Japan		
342	Genome editing for improvement of plant function using CRISPR/CAS9	Yuriko Osakabe	Tokushima University, Japan		

No.	Title	Presenter	Organization
343	RIKEN BRC collection of plant cultured-cell lines: Project in 2017	Toshihiro Kobayashi	RIKEN BRC, Japan
344	Protein introduction into plant cells by the irradiation of temperature-controlled atmospheric CO ₂ /N ₂ plasma	Yuki Yanagawa	National Agriculture and Food Research Organization, Japan
345	Data driven crop design technology	Takashi Hirayama	Okayama University, Japan
346	The fermentation waste of <i>Lactobacillus paracasei</i> No-2 was capable of inducing plant growth and promote plant defense mechanism against biotic and abiotic stress simultaneous.	Kuo-An Lai	National Taitung University, Taiwan
347	Exploring the pre-vascular function of the TMO5/LHW module in non-vascular plant Marchantia polymorpha	Kuan-Ju Lu	Wageningen University and Research, Nederland
348	Modification of chloroplast DNA in plants by using transcription activator like effector nuclease	Shih-Syuan Chen	National Cheng Kung University, Taiwan
349	Expression of β-glucosidase from thermophilic archaeon Sulfolobus solfataricus in transgenic tobacco	Huang Tzu-Ling	National Cheng Kung University, Taiwan
350	Use of the CRISPR/Cas9 editing system to knock out DELLA and cytokinin oxidase genes in Phalaenopsis aphrodite subsp. formosana	Chien-ying Chen	National Cheng Kung University, Taiwan
351	Evaluation of a CRISPR/Cas9 vector system using the translational enhancer, dMac3	Hirishi Teramura	Tokyo University, Japan
352	Developing the molecular identification for litchi cultivars using NGS miseq data	JenYu Chang	Taiwan Agricultural Research Institute, Taiwan
353	Establishment of Genotyping Services Platform for Tomato Disease Resistance Breeding	Zi-Jung Chiu	Academia Sinica, Taiwan
354	Genetic Study on the Yellow Endosperm Mutant and Breeding to Add the Aroma Trait in Rice	Cheng-Chou Yu	National Chung Hsing University, Taiwan
355	High-efficient genome editing using CRISPR/Cas9 targeting functional genes in tomato.	Risa Ueta	Tokushima University, Japan
356	The rice reference genome revisited: extensive update by the PacBio SMRT sequencing technology	Takeshi Itoh	NARO Advanced Analysis Center, Japan
357	A New Approach for Better Identification of Plant Endogenous Peptides using Tandem Mass Spectrometry	Ying-Lan Chen	Academia Sinica, Taiwan
358	Application of Maize IRES for Multiple Enzymes Translation to Produce Ectoine in Rice Cells	Shu Yao Liao	Yuan Ze University, Taiwan
359	Nucleic acid detection of genetically modified crops by an ion-exchange nanomembrane sensor	Wenshan Huang	Yuan Ze University, Taiwan
360	Proteomic comparison of recombinant inbred lines gives insights into bruchid resistance of mungbean	Mao-Sen Liu	Academia Sinica, Taiwan

