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Abstract— Automated material handling systems (AMHS) 
play a critical role in semiconductor fabrication plants (fabs). 
The primary type of AMHS used in fabs is the overhead hoist 
transport (OHT) system, which transports lots between 
processing machines. A modern large-scale fab may operate 
thousands of OHT vehicles and thus often experiences OHT 
vehicle congestion. This paper proposes a reinforcement 
learning-based dynamic routing algorithm to address the 
OHT vehicle congestion problem. We develop a graph neural 
network–based predictive model to determine in advance the 
situation on an OHT vehicle’s succeeding track. This 
predictive model enables the algorithm to recognize the traffic 
volume regardless of the data distribution and the track 
topology. We show via simulation that this novel algorithm 
reduces the mean OHT vehicle travel time in a controlled case. 
In future work, we will conduct simulation verification and 
then apply our model to a commercial OHT management 
system to study its real-world in-fab performance.  

Keywords: Automated material handling system, overhead 
hoist transport, dynamic routing, graph neural network 

I. INTRODUCTION 

The process of forming modern semiconductor wafers 
consists of numerous steps with re-entrance performed by 
hundreds of machines [1]. Bundles of 25 wafers are loaded 
into a unit called a front-opening unified pod (FOUP) for 
transport via an overhead hoist transport (OHT) system to 
the machine that performs each step. Thus, an OHT system 
forms the backbone of an automated material handling 
system (AMHS) in a fab, as shown in Figure 1. 

 
Figure 1. Components of an overhead transport system 
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The details of OHT systems, their performance 
measures, and operational aspects can be found in [2]. Due 
to recent increases in production, most large-scale 
semiconductor fabs operate thousands of OHT vehicles on a 
track simultaneously. Such large-scale systems may suffer 
from severe OHT vehicle congestion, especially as many 
OHT routes overlap and thus OHT vehicles often become 
concentrated in certain locations. This congestion increases 
OHT vehicle travel time, thereby highly increasing the 
overall cycle time of a product. In worst-case situations, a 
deadlock occurs, which means that the passage of OHT 
vehicles is halted. An intuitive way to solve this problem is 
for OHT vehicles to be able to recognize congestion before 
encountering it, and thus select a route to use that avoids 
congestion. In this study, Q routing is used as a 
route-selection method in the context of congestion. Q 
routing is a reinforcement learning algorithm that receives a 
reward based on the edge travel time described in [2].  
However, a disadvantage of Q routing is its delayed 
adaptation in updating a Q value; that is, it updates a Q value 
after an OHT vehicle has completed traveling an edge. In 
other words, the succeeding edge travel time is not reflected 
in the Q value at the moment of route decision-making. 

In this study, we solve this delayed adaptation problem 
by developing a predictive model for edge travel time, 
which determines the predicted edge travel time as a Q value 
before an OHT vehicle travels an edge. This enables a 
process denoted active Q routing, whereby an OHT vehicle 
is routed to a non-congested edge. The predictive model is 
based on a graphical neural network (GNN), which ensures 
that the adjacency status of the track and related information 
is effectively embedded in the OHT system. In comparison 
to other models that use the entire set of data from a map, 
our GNN-based model uses only surrounding edge data and 
thus has greatly improved learning speed and computational 
time.  

II. LITERATURE REVIEW 

A. Pickup and delivery problem with time windows 
The vehicle routing problem (VRP) is a conventional 

study to find the optimal trajectory that minimizes the total 
distance traveled. In particular, a pickup and delivery 
problem with time windows (PDPTW) deals with 
transporting objects from origin to destination like AMHS. 
Exact algorithm based on branch-and-price, such as [3], [4], 
and [5], achieve the near-optimal solution efficiently. In 
addition, many studies propose the meta-heuristic approach 
to solve PDPTW [6], [7]. An adaptive large neighborhood 
search heuristic [8] solves various instances of PDPTW 
with high utility and robustness. Existing PDPTW studies 
have focused on computational time to overcome 
NP-hardness. However, in practice, the physical movement 
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of material handling robots arises congestion and deadlock 
problems [9]. 

B. Routing algorithm for the AGV system 
The automated guided vehicle (AGV) is a typical 

material handling robot that moves along a set of 
predetermined paths on the floor. Studies for the AGV 
routing algorithm consider physical movement to avoid 
collision and deadlock in reality [10]. Petri net-based AGV 
routing algorithms address collision by using state restrict 
concept [11], [12]. Studies that adding occupation time 
constraints makes implicit interconnection between AGVs 
to solve the routing problem [13], [14], and [15]. Jiaoyang, 
et al. [16] proposed multi-agent routing without collisions 
for warehouses. On the other hand, the increased number of 
AGVs and map complexity leads to many studies on 
learning-based algorithms. Reinforcement learning [17] is 
one of the main methods for the general routing problem. 
Fundamental Q value-based approach with proper modeling 
are found in [18], [19]. Moreover, Binyu, et al. [20] 
proposed a dynamic routing model to an arbitrary 
environment, and Guillaume, et al. [21] design the 
multi-agent reinforcement learning algorithm for robot 
routing. The graph structure represents the topography, 
therefore, graph-based AGV routing algorithm have been 
studied [22], [23]. 

C. Routing algorithm for the OHT system 
The OHT track is a directed graph G(N, E) where N is a 

set of nodes and E is a set of edges. A unique characteristic 
of the OHT track compared to other AMHS is a one-way 
layout and bay structure [24]. Therefore, serious congestion 
may occur with a traffic volume increase in the central loop 
that connects bays. Petri-net has also been applied to the 
OHT routing algorithm to avoid congestion [25], [26]. In 
addition, the well-known k shortest path algorithm is 
applied to the OHT routing problem [27]. Moreover, there 
is a routing algorithm using markov decision process 
modeling [28] and a practical method using the congestion 
monitoring system (CMS) [29]. Bartlett, et al. [30] 
proposed the dynamic Dijkstra algorithm that updates the 
edge cost dynamically, and solved up to the 250 OHTs scale 
problem. Hwang and Jang [2] proposed the reinforcement 
learning-based dynamic routing algorithm called Q routing. 
There exists a Q-learning-based routing algorithm for 
dynamically changing networks [31], [32]. Hwang and Jang 
define the Q(λ) learning framework for OHT routing and 
solve the real fab-sized system in practical computational 
time. 

III. METHOD 

A. Route Selection Method: Q Routing 
Q routing is a reinforcement learning algorithm that 

learns the traffic volume of the route. We define Q value 
Q[(d, i), j] as the estimated remaining travel time for an 
OHT vehicle traveling from the current node i to the 
destination node d, where the OHT vehicle chooses its next 
node j. Therefore, the Q value can be represented as the 
level of congestion on the succeeding route of an OHT 
vehicle. Note that (d, i) is a state of the current vehicle, and   
j∈A(d, i) is an action where A(d, i) is a set of possible 
succeeding nodes. Each OHT vehicle updates the Q value 
with t(i, j), the travel time from the current node i to the next 
node j, whenever it completes traveling an edge. A Q value 

is dynamically updated with the edge travel time via basic 
Q(λ) learning. However, before the edge travel time is used 
as the immediate reward, it is subjected to reward shaping 
[33] for stability. This is represented by equation (1), in 
which ϕ(d, i) is the potential function that is the 
deterministic shortest travel time from the node i to the 
destination node d. Equation (2) is the one-step temporal 
difference error. The Q value of the edge is updated with 
this δ(t) and by use of the eligibility trace concept. 

R[(d, i), j] = t(i, j) + ρ{ϕ(d, j) − ϕ(d, i)}    (1) 

δ(t) = R[(d, i), j] + γ minQ[(d, j), k] – Q[(d, i), j]   (2) 

 

 
Figure 2. Example of the route selection 

Figure 2 shows an example of a traveling OHT vehicle 
with a given Q value. When an OHT vehicle arrives at node 
7, Q[(d, 6), 7] is updated with the edge travel time. This 
delayed adaptation is denoted as a post update. In addition, 
when an OHT vehicle arrives at a branching node, such as 
node 7, it selects its next destination node based on the 
Boltzmann softmax action policy between succeeding Q 
values. Since the post update approach can cause problems, 
we develop an active update approach to update the Q value 
with edge travel time before an OHT vehicle travels a given 
edge. The edge travel time t(i, j) is replaced by the predicted 
edge travel time in equation (1). Figure 3 shows a typical 
problem caused by the use of a post update approach. 
Assume that the destination node of the blue OHT vehicle is 
node 4 and there is a job to be processed on node 3, thus 
there will be severe congestion on edge (2, 3). In the post 
update approach, the blue OHT vehicle cannot recognize 
the congestion on edge (2, 3). This is because no OHT 
vehicle on edge (2, 3) has completed traveling the edge, and 
the congestion on this edge is not yet reflected in its Q-value. 
Thus, the blue OHT vehicle may choose node 3 as its next 
node. In contrast, our active update approach reflects the 
predicted edge travel time of edge (2, 3) before the blue 
OHT vehicle begins traveling edge (2, 3). Therefore, the 
blue OHT vehicle recognizes the Q value of the edge and 
consequently detours to node 6. 

B. Description of the GNN predictive model 
Our novel predictive model for edge travel time is based 

on the graph neural network (GNN), and the overall 
network structure is illustrated in Figure 4. We define the 
machine learning task to be regression, which is a typical 
form of supervised learning. The predictive model is 
divided into two parts: a message passing part based on 
high-level representation extraction, and a regression part. 
The message passing framework is a spatial-based 
convolutional GNN that learns a high-level representation 
of each node in a graph, meaning a representation of remote 
nodes that are the same distance from the target node. The 
information from a given level can reach the target node by 
aggregating the information for the neighboring nodes of 
each node. This aggregation can be performed using various  
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(a) Post update, the blue OHT vehicle increases congestion level 

 
(b) Active update, the blue OHT vehicle takes detour 

Figure 3. Delayed adaptation problem of the post update approach 

forms of the adjacent matrix. Our predictive model is based 
in particular on GraphSAGE, a general inductive 
framework [34]. The readout function makes graph 
representation and the final value is extracted by a fully 
connected regression network. The target value predicted by 
the model should not be the scale of the travel time; rather, it 
should be the additional travel time caused by congestion. 
Therefore, we define the true label ∆t* as the difference 
between the actual travel time (with congestion) and ideal 
travel time (with no congestion). 

 
Figure 4. Summary of the predictive model 

C. Data extraction and preprocessing 
The process of preparing the training data is divided into 

two parts. The first part is the extraction of data from the 
AutoMod simulation; the second part is the preprocessing of 
this extracted data to generate PyTorch geometric graph 
data. Figure 5 shows the overall process of data preparation. 

 
Figure 5. Extraction of training data 

Note that graph data are formed by extracting only the 
surrounding edge data of the target edge to be predicted. 
This is crucial for a routing algorithm suitable for 
application to large-scale OHT systems. That is, if the 
number of the training data is extremely high, the GNN 
learning time would be prohibitively long and the GNN may 
exhibit instability and fail to converge. Moreover, as the 
scale of a map increases, the number of edges increases 
exponentially, meaning it is impossible to perform learning 
using the entire data. Figure 6 describes the difference 
between the entire set of data and the target edge 

surrounding data, which illustrates the importance of our 
selection of the graph data structure. 

 
Figure 6. Difference between whole and surrounding information 

In the PyTorch geometric conversion process, the model 
deletes edges that do not affect the target edge from graphs 
collected as far as a given distance. This reduces the size of 
the data, which increases its efficiency and clarifies its 
meaning. 

 
Figure 7. Example of the main stream and a back stream 

In addition, we define the main stream and back stream 
of the graph, as exemplified in Figure 7. The main stream 
denotes edges that can be reached from the target edge 
without any direction change, whereas the back stream 
denotes other edges that are not in the main stream. We 
assume that edges in different streams have different effects 
on the target edge. Therefore, as described in Figure 4, our 
model first applies forward message passing to the back 
stream, and then backward message passing to the main 
stream. 

D. Additional methods to increase performance 
We apply the properly modified graph attention network 

(GAT) [35] structure to the model. The major difference 
between the OHT problem and general GNN tasks is the 
existence of the target edge. Moreover, we want to know the 
influence of each edge on the target edge, not the influence 
of each edge’s neighbors. The score function follows the 
GAT score structure but uses a softmax for all edges rather 
than just for the neighbors of each edge. 

On the other hand, the distribution of the collected 
training data is skewed, therefore, the prioritized experience 
replay (PER) concept is used [36]. PER is a method that 
greatly improves the performance of the Deep Q Network 
(DQN) and is used in many reinforcement learning 
approaches [37]. Figure 8 compares the use of PER for 
supervised learning and a DQN. We save all of the training 
data to the replay buffer and sample the mini-batch with 
priorities. We define the last-seen error for each training 
data as each priority. Because supervised learning does not 
have an environment and does not store new samples 
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through actions, the model updates the priority of all replay 
buffer data at certain cycles. 

 
Figure 8. Prioritized experience replay for supervised learning 

IV. NUMERICAL EXPERIMENTS 

A. Model without PER using a uniform dataset 
We cut the skewed training data which has the maximum 

value of 212.21s to make a uniform dataset before applying 
described PER method. The key performance indicators 
(KPIs) for predictions are the r2 score and mean squared 
error (MSE). The best model for a uniform dataset has the r2 
score of 0.879 and the MSE of 35.172s². We use AutoMod 
simulation to test the performance of active Q routing. The 
testbed is a controlled small case with 25 OHT vehicles and 
5 machines that is easy to control the traffic volume for each 
edge. We define the KPI as the mean transport time, i.e., the 
average time an OHT vehicle takes to travel, after FOUP 
loading, to the next machine in an OHT system. As the 
learning progresses, the predictive accuracy of our model 
gradually increases; thus, based on the validation set r2 
score, models are stored at 0.05s intervals from 0s to 0.8s. 
Then, each model is tested in an AutoMod simulation. 
Figure 9 depicts the results of this simulation testing, 
demonstrating that the active update approach outperforms 
the post update approach if the prediction accuracy is high 
enough. However, this predictive model has poor 
extrapolation because we cut the extremely few high travel 
time data to make training data uniform. 

 
Figure 9. Mean travel time from active update approach according to r2 

score 

B. Model with PER using a cut entire dataset 
We, therefore, expand the range of the dataset to the 

maximum value of 212.21s, and thus PER is the essential 
method and is used for supervised learning (as described in 
the Methods section).  As there are extremely few high 
travel time data points for each class, these cannot be 
divided into a training set and a test set. Thus, they are all 
put into a training set. Figure 10 and 11 compare the 
performance when PER is and is not applied. The PER 

model generates accurate predictions, even for high travel 
time data points, but the no-PER model exhibits a lack of 
learning, as shown by its very insufficient number of high  

 
Figure 10. Scatter plot without prioritized experience replay 

 
Figure 11. Scatter plot with prioritized experience replay 

travel time samples. Based on the training data, the final 
model has the r2 score of 0.909 and the MSE of 62.861s². 
We also test this PER model in the AutoMod simulation, 
which generates the mean travel time shown in Figure 12. 
The active Q routing with PER model outperforms the 
dynamic Dijkstra and post Q routing. Also, it outperforms 
the active Q routing with the no-PER model as prediction 
accuracy increases for all range data. 

 
Figure 12. Test of prioritized experience replay model in AutoMod 

V. CONCLUSION 
This study develops a GNN-based dynamic routing 

algorithm to assist OHT vehicles to avoid congested routes 
in an OHT system. The resulting model has high predictive 
accuracy when applied to a small map, but whether this 
model reduces the actual travel time of OHT vehicles in a 
fab remains to be confirmed. In future work, we will apply 
our model to a large map to examine its statistical 
performance over several replications. We will also present 
mathematical logic on the impact of volatile rewards 
generated by deep learning models on reinforcement 
learning performance. After the simulation verification has 
been completed, our model will be incorporated into a 
commercial OHT management system and its performance 
examined in an industrial setting. 
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