
Proceedings of the 2022 International Symposium on Semiconductor Manufacturing Intelligence (ISMI2022)

1

Abstract— Automated material handling systems (AMHS)
play a critical role in semiconductor fabrication plants (fabs).
The primary type of AMHS used in fabs is the overhead hoist
transport (OHT) system, which transports lots between
processing machines. A modern large-scale fab may operate
thousands of OHT vehicles and thus often experiences OHT
vehicle congestion. This paper proposes a reinforcement
learning-based dynamic routing algorithm to address the
OHT vehicle congestion problem. We develop a graph neural
network–based predictive model to determine in advance the
situation on an OHT vehicle’s succeeding track. This
predictive model enables the algorithm to recognize the traffic
volume regardless of the data distribution and the track
topology. We show via simulation that this novel algorithm
reduces the mean OHT vehicle travel time in a controlled case.
In future work, we will conduct simulation verification and
then apply our model to a commercial OHT management
system to study its real-world in-fab performance.

Keywords: Automated material handling system, overhead
hoist transport, dynamic routing, graph neural network

I. INTRODUCTION

The process of forming modern semiconductor wafers
consists of numerous steps with re-entrance performed by
hundreds of machines [1]. Bundles of 25 wafers are loaded
into a unit called a front-opening unified pod (FOUP) for
transport via an overhead hoist transport (OHT) system to
the machine that performs each step. Thus, an OHT system
forms the backbone of an automated material handling
system (AMHS) in a fab, as shown in Figure 1.

Figure 1. Components of an overhead transport system

The authors thank the Ministry of Education of the Republic of Korea

and the National Research Foundation of Korea for their financial support
(NRF-2021R1A2C3008172)

Dr. Jaeho Lee is a graduate research assistant at the Korea Advanced
Institute of Science and Technology (KAIST), Republic of Korea.

Prof. Young Jae Jang is the Associate Professor of Industrial and
Systems Engineering at the Korea Advanced Institute of Science and
Technology (KAIST), Republic of Korea. He is also the founder and CEO
of DAIM Research Corporation.

The details of OHT systems, their performance
measures, and operational aspects can be found in [2]. Due
to recent increases in production, most large-scale
semiconductor fabs operate thousands of OHT vehicles on a
track simultaneously. Such large-scale systems may suffer
from severe OHT vehicle congestion, especially as many
OHT routes overlap and thus OHT vehicles often become
concentrated in certain locations. This congestion increases
OHT vehicle travel time, thereby highly increasing the
overall cycle time of a product. In worst-case situations, a
deadlock occurs, which means that the passage of OHT
vehicles is halted. An intuitive way to solve this problem is
for OHT vehicles to be able to recognize congestion before
encountering it, and thus select a route to use that avoids
congestion. In this study, Q routing is used as a
route-selection method in the context of congestion. Q
routing is a reinforcement learning algorithm that receives a
reward based on the edge travel time described in [2].
However, a disadvantage of Q routing is its delayed
adaptation in updating a Q value; that is, it updates a Q value
after an OHT vehicle has completed traveling an edge. In
other words, the succeeding edge travel time is not reflected
in the Q value at the moment of route decision-making.

In this study, we solve this delayed adaptation problem
by developing a predictive model for edge travel time,
which determines the predicted edge travel time as a Q value
before an OHT vehicle travels an edge. This enables a
process denoted active Q routing, whereby an OHT vehicle
is routed to a non-congested edge. The predictive model is
based on a graphical neural network (GNN), which ensures
that the adjacency status of the track and related information
is effectively embedded in the OHT system. In comparison
to other models that use the entire set of data from a map,
our GNN-based model uses only surrounding edge data and
thus has greatly improved learning speed and computational
time.

II. LITERATURE REVIEW

A. Pickup and delivery problem with time windows
The vehicle routing problem (VRP) is a conventional

study to find the optimal trajectory that minimizes the total
distance traveled. In particular, a pickup and delivery
problem with time windows (PDPTW) deals with
transporting objects from origin to destination like AMHS.
Exact algorithm based on branch-and-price, such as [3], [4],
and [5], achieve the near-optimal solution efficiently. In
addition, many studies propose the meta-heuristic approach
to solve PDPTW [6], [7]. An adaptive large neighborhood
search heuristic [8] solves various instances of PDPTW
with high utility and robustness. Existing PDPTW studies
have focused on computational time to overcome
NP-hardness. However, in practice, the physical movement

The Graph Neural Network–Based Dynamic Routing
Algorithm for Overhead Hoist Transport Vehicles in

Semiconductor Fabrication Plants
Jaeho Lee and Young Jae Jang

Proceedings of the 2022 International Symposium on Semiconductor Manufacturing Intelligence (ISMI2022)

2

of material handling robots arises congestion and deadlock
problems [9].

B. Routing algorithm for the AGV system
The automated guided vehicle (AGV) is a typical

material handling robot that moves along a set of
predetermined paths on the floor. Studies for the AGV
routing algorithm consider physical movement to avoid
collision and deadlock in reality [10]. Petri net-based AGV
routing algorithms address collision by using state restrict
concept [11], [12]. Studies that adding occupation time
constraints makes implicit interconnection between AGVs
to solve the routing problem [13], [14], and [15]. Jiaoyang,
et al. [16] proposed multi-agent routing without collisions
for warehouses. On the other hand, the increased number of
AGVs and map complexity leads to many studies on
learning-based algorithms. Reinforcement learning [17] is
one of the main methods for the general routing problem.
Fundamental Q value-based approach with proper modeling
are found in [18], [19]. Moreover, Binyu, et al. [20]
proposed a dynamic routing model to an arbitrary
environment, and Guillaume, et al. [21] design the
multi-agent reinforcement learning algorithm for robot
routing. The graph structure represents the topography,
therefore, graph-based AGV routing algorithm have been
studied [22], [23].

C. Routing algorithm for the OHT system
The OHT track is a directed graph G(N, E) where N is a

set of nodes and E is a set of edges. A unique characteristic
of the OHT track compared to other AMHS is a one-way
layout and bay structure [24]. Therefore, serious congestion
may occur with a traffic volume increase in the central loop
that connects bays. Petri-net has also been applied to the
OHT routing algorithm to avoid congestion [25], [26]. In
addition, the well-known k shortest path algorithm is
applied to the OHT routing problem [27]. Moreover, there
is a routing algorithm using markov decision process
modeling [28] and a practical method using the congestion
monitoring system (CMS) [29]. Bartlett, et al. [30]
proposed the dynamic Dijkstra algorithm that updates the
edge cost dynamically, and solved up to the 250 OHTs scale
problem. Hwang and Jang [2] proposed the reinforcement
learning-based dynamic routing algorithm called Q routing.
There exists a Q-learning-based routing algorithm for
dynamically changing networks [31], [32]. Hwang and Jang
define the Q(λ) learning framework for OHT routing and
solve the real fab-sized system in practical computational
time.

III. METHOD

A. Route Selection Method: Q Routing
Q routing is a reinforcement learning algorithm that

learns the traffic volume of the route. We define Q value
Q[(d, i), j] as the estimated remaining travel time for an
OHT vehicle traveling from the current node i to the
destination node d, where the OHT vehicle chooses its next
node j. Therefore, the Q value can be represented as the
level of congestion on the succeeding route of an OHT
vehicle. Note that (d, i) is a state of the current vehicle, and
j∈A(d, i) is an action where A(d, i) is a set of possible
succeeding nodes. Each OHT vehicle updates the Q value
with t(i, j), the travel time from the current node i to the next
node j, whenever it completes traveling an edge. A Q value

is dynamically updated with the edge travel time via basic
Q(λ) learning. However, before the edge travel time is used
as the immediate reward, it is subjected to reward shaping
[33] for stability. This is represented by equation (1), in
which ϕ(d, i) is the potential function that is the
deterministic shortest travel time from the node i to the
destination node d. Equation (2) is the one-step temporal
difference error. The Q value of the edge is updated with
this δ(t) and by use of the eligibility trace concept.

R[(d, i), j] = t(i, j) + ρ{ϕ(d, j) − ϕ(d, i)} (1)

δ(t) = R[(d, i), j] + γ minQ[(d, j), k] – Q[(d, i), j] (2)

Figure 2. Example of the route selection

Figure 2 shows an example of a traveling OHT vehicle
with a given Q value. When an OHT vehicle arrives at node
7, Q[(d, 6), 7] is updated with the edge travel time. This
delayed adaptation is denoted as a post update. In addition,
when an OHT vehicle arrives at a branching node, such as
node 7, it selects its next destination node based on the
Boltzmann softmax action policy between succeeding Q
values. Since the post update approach can cause problems,
we develop an active update approach to update the Q value
with edge travel time before an OHT vehicle travels a given
edge. The edge travel time t(i, j) is replaced by the predicted
edge travel time in equation (1). Figure 3 shows a typical
problem caused by the use of a post update approach.
Assume that the destination node of the blue OHT vehicle is
node 4 and there is a job to be processed on node 3, thus
there will be severe congestion on edge (2, 3). In the post
update approach, the blue OHT vehicle cannot recognize
the congestion on edge (2, 3). This is because no OHT
vehicle on edge (2, 3) has completed traveling the edge, and
the congestion on this edge is not yet reflected in its Q-value.
Thus, the blue OHT vehicle may choose node 3 as its next
node. In contrast, our active update approach reflects the
predicted edge travel time of edge (2, 3) before the blue
OHT vehicle begins traveling edge (2, 3). Therefore, the
blue OHT vehicle recognizes the Q value of the edge and
consequently detours to node 6.

B. Description of the GNN predictive model
Our novel predictive model for edge travel time is based

on the graph neural network (GNN), and the overall
network structure is illustrated in Figure 4. We define the
machine learning task to be regression, which is a typical
form of supervised learning. The predictive model is
divided into two parts: a message passing part based on
high-level representation extraction, and a regression part.
The message passing framework is a spatial-based
convolutional GNN that learns a high-level representation
of each node in a graph, meaning a representation of remote
nodes that are the same distance from the target node. The
information from a given level can reach the target node by
aggregating the information for the neighboring nodes of
each node. This aggregation can be performed using various

Proceedings of the 2022 International Symposium on Semiconductor Manufacturing Intelligence (ISMI2022)

3

(a) Post update, the blue OHT vehicle increases congestion level

(b) Active update, the blue OHT vehicle takes detour

Figure 3. Delayed adaptation problem of the post update approach

forms of the adjacent matrix. Our predictive model is based
in particular on GraphSAGE, a general inductive
framework [34]. The readout function makes graph
representation and the final value is extracted by a fully
connected regression network. The target value predicted by
the model should not be the scale of the travel time; rather, it
should be the additional travel time caused by congestion.
Therefore, we define the true label ∆t* as the difference
between the actual travel time (with congestion) and ideal
travel time (with no congestion).

Figure 4. Summary of the predictive model

C. Data extraction and preprocessing
The process of preparing the training data is divided into

two parts. The first part is the extraction of data from the
AutoMod simulation; the second part is the preprocessing of
this extracted data to generate PyTorch geometric graph
data. Figure 5 shows the overall process of data preparation.

Figure 5. Extraction of training data

Note that graph data are formed by extracting only the
surrounding edge data of the target edge to be predicted.
This is crucial for a routing algorithm suitable for
application to large-scale OHT systems. That is, if the
number of the training data is extremely high, the GNN
learning time would be prohibitively long and the GNN may
exhibit instability and fail to converge. Moreover, as the
scale of a map increases, the number of edges increases
exponentially, meaning it is impossible to perform learning
using the entire data. Figure 6 describes the difference
between the entire set of data and the target edge

surrounding data, which illustrates the importance of our
selection of the graph data structure.

Figure 6. Difference between whole and surrounding information

In the PyTorch geometric conversion process, the model
deletes edges that do not affect the target edge from graphs
collected as far as a given distance. This reduces the size of
the data, which increases its efficiency and clarifies its
meaning.

Figure 7. Example of the main stream and a back stream

In addition, we define the main stream and back stream
of the graph, as exemplified in Figure 7. The main stream
denotes edges that can be reached from the target edge
without any direction change, whereas the back stream
denotes other edges that are not in the main stream. We
assume that edges in different streams have different effects
on the target edge. Therefore, as described in Figure 4, our
model first applies forward message passing to the back
stream, and then backward message passing to the main
stream.

D. Additional methods to increase performance
We apply the properly modified graph attention network

(GAT) [35] structure to the model. The major difference
between the OHT problem and general GNN tasks is the
existence of the target edge. Moreover, we want to know the
influence of each edge on the target edge, not the influence
of each edge’s neighbors. The score function follows the
GAT score structure but uses a softmax for all edges rather
than just for the neighbors of each edge.

On the other hand, the distribution of the collected
training data is skewed, therefore, the prioritized experience
replay (PER) concept is used [36]. PER is a method that
greatly improves the performance of the Deep Q Network
(DQN) and is used in many reinforcement learning
approaches [37]. Figure 8 compares the use of PER for
supervised learning and a DQN. We save all of the training
data to the replay buffer and sample the mini-batch with
priorities. We define the last-seen error for each training
data as each priority. Because supervised learning does not
have an environment and does not store new samples

Proceedings of the 2022 International Symposium on Semiconductor Manufacturing Intelligence (ISMI2022)

4

through actions, the model updates the priority of all replay
buffer data at certain cycles.

Figure 8. Prioritized experience replay for supervised learning

IV. NUMERICAL EXPERIMENTS

A. Model without PER using a uniform dataset
We cut the skewed training data which has the maximum

value of 212.21s to make a uniform dataset before applying
described PER method. The key performance indicators
(KPIs) for predictions are the r2 score and mean squared
error (MSE). The best model for a uniform dataset has the r2
score of 0.879 and the MSE of 35.172s². We use AutoMod
simulation to test the performance of active Q routing. The
testbed is a controlled small case with 25 OHT vehicles and
5 machines that is easy to control the traffic volume for each
edge. We define the KPI as the mean transport time, i.e., the
average time an OHT vehicle takes to travel, after FOUP
loading, to the next machine in an OHT system. As the
learning progresses, the predictive accuracy of our model
gradually increases; thus, based on the validation set r2
score, models are stored at 0.05s intervals from 0s to 0.8s.
Then, each model is tested in an AutoMod simulation.
Figure 9 depicts the results of this simulation testing,
demonstrating that the active update approach outperforms
the post update approach if the prediction accuracy is high
enough. However, this predictive model has poor
extrapolation because we cut the extremely few high travel
time data to make training data uniform.

Figure 9. Mean travel time from active update approach according to r2

score

B. Model with PER using a cut entire dataset
We, therefore, expand the range of the dataset to the

maximum value of 212.21s, and thus PER is the essential
method and is used for supervised learning (as described in
the Methods section). As there are extremely few high
travel time data points for each class, these cannot be
divided into a training set and a test set. Thus, they are all
put into a training set. Figure 10 and 11 compare the
performance when PER is and is not applied. The PER

model generates accurate predictions, even for high travel
time data points, but the no-PER model exhibits a lack of
learning, as shown by its very insufficient number of high

Figure 10. Scatter plot without prioritized experience replay

Figure 11. Scatter plot with prioritized experience replay

travel time samples. Based on the training data, the final
model has the r2 score of 0.909 and the MSE of 62.861s².
We also test this PER model in the AutoMod simulation,
which generates the mean travel time shown in Figure 12.
The active Q routing with PER model outperforms the
dynamic Dijkstra and post Q routing. Also, it outperforms
the active Q routing with the no-PER model as prediction
accuracy increases for all range data.

Figure 12. Test of prioritized experience replay model in AutoMod

V. CONCLUSION
This study develops a GNN-based dynamic routing

algorithm to assist OHT vehicles to avoid congested routes
in an OHT system. The resulting model has high predictive
accuracy when applied to a small map, but whether this
model reduces the actual travel time of OHT vehicles in a
fab remains to be confirmed. In future work, we will apply
our model to a large map to examine its statistical
performance over several replications. We will also present
mathematical logic on the impact of volatile rewards
generated by deep learning models on reinforcement
learning performance. After the simulation verification has
been completed, our model will be incorporated into a
commercial OHT management system and its performance
examined in an industrial setting.

Proceedings of the 2022 International Symposium on Semiconductor Manufacturing Intelligence (ISMI2022)

5

REFERENCES
[1] J. Kim, G. Yu, and Y. J. Jang, “Semiconductor fab layout design

analysis with 300-mm fab data:“is minimum distance-based layout
design best for semiconductor fab design?”,” Computers &
Industrial Engineering, vol. 99, pp. 330–346, 2016.

[2] I. Hwang and Y. J. Jang, “Q (λ) learning-based dynamic route
guidance algorithm for overhead hoist transport systems in
semiconductor fabs,” International Journal of Production Research,
vol. 58, no. 4, pp. 1199– 1221, 2020.

[3] Y. Dumas, J. Desrosiers, and F. Soumis, “The pickup and delivery
problem with time windows,” European journal of operational
research, vol. 54, no. 1, pp. 7–22, 1991.

[4] R. Baldacci, E. Bartolini, and A. Mingozzi, “An exact algorithm for
the pickup and delivery problem with time windows,” Operations
research, vol. 59, no. 2, pp. 414–426, 2011.

[5] R. Masson, S. Ropke, F. Lehu ́ed ́e, and O. P ́eton, “A
branch-and-cut-and-price approach for the pickup and delivery
problem with shuttle routes,” European Journal of Operational
Research, vol. 236, no. 3, pp. 849–862, 2014.

[6] W. P. Nanry and J. W. Barnes, “Solving the pickup and delivery
problem with time windows using reactive tabu search,”
Transportation Research Part B: Methodological, vol. 34, no. 2, pp.
107–121, 2000.

[7] H.-F. Wang and Y.-Y. Chen, “A genetic algorithm for the
simultaneous delivery and pickup problems with time window,”
Computers & industrial engineering, vol. 62, no. 1, pp. 84–95, 2012.

[8] S. Ropke and D. Pisinger, “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows,”
Transportation science, vol. 40, no. 4, pp. 455–472, 2006.

[9] T. Le-Anh and M. De Koster, “A review of design and control of
automated guided vehicle systems,” European Journal of
Operational Research, vol. 171, no. 1, pp. 1–23, 2006.

[10] M. De Ryck, M. Versteyhe, and F. Debrouwere, “Automated guided
vehicle systems, state-of-the-art control algorithms and techniques,”
Journal of Manufacturing Systems, vol. 54, pp. 152–173, 2020.

[11] T. Nishi and R. Maeno, “Petri net decomposition approach to
optimization of route planning problems for agv systems,” IEEE
Transactions on Automation Science and Engineering, vol. 7, no. 3,
pp. 523–537, 2010.

[12] T. Nishi and Y. Tanaka, “Petri net decomposition approach for
dispatching and conflict-free routing of bidirectional automated
guided vehicle systems,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 42, no. 5, pp.
1230–1243, 2012.

[13] S. Rajotia, K. Shanker, and J. Batra, “A semi-dynamic time window
constrained routeing strategy in an agv system,” International
Journal of Production Research, vol. 36, no. 1, pp. 35–50, 1998.

[14] N. Smolic-Rocak, S. Bogdan, Z. Kovacic, and T. Petrovic, “Time
windows based dynamic routing in multi-agv systems,” IEEE
Transactions on Automation Science and Engineering, vol. 7, no. 1,
pp. 151–155, 2009.

[15] T. J. Chen, Y. Sun, W. Dai, W. Tao, and S. Liu, “On the shortest and
conflict-free path planning of multi-agv system based on dijkstra
algorithm and the dynamic time-window method,” in Advanced
Materials Research, vol. 645. Trans Tech Publ, 2013, pp. 267–271.

[16] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. S. Kumar, and S. Koenig,
“Lifelong multi-agent path finding in large-scale warehouses,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, no. 13, 2021, pp. 11 272–11 281.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction. MIT press, 2018.

[18] S. Yu, J. Zhou, B. Li, S. Mabu, and K. Hirasawa, “Q value-based
dynamic programming with sarsa learning for real time route
guidance in large scale road networks,” in The 2012 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2012, pp.
1–7.

[19] T. Xue, P. Zeng, and H. Yu, “A reinforcement learning method for
multi-agv scheduling in manufacturing,” in 2018 IEEE International
Conference on Industrial Technology (ICIT). IEEE, 2018, pp.
1557–1561.

[20] B. Wang, Z. Liu, Q. Li, and A. Prorok, “Mobile robot path planning
in dynamic environments through globally guided reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp.
6932–6939, 2020.

[21] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. S. Kumar, S. Koenig, and
H. Choset, “Primal: Pathfinding via reinforcement and imitation

multi-agent learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 2378–2385, 2019.

[22] J. Yu and S. M. LaValle, “Structure and intractability of optimal
multi-robot path planning on graphs,” in Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.

[23] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks
for decentralized multi-robot path planning,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2020, pp. 11 785–11 792.

[24] J. C. Chen, R.-D. Dai, and C.-W. Chen, “A practical fab design
procedure for wafer fabrication plants,” International journal of
production research, vol. 46, no. 10, pp. 2565–2588, 2008.

[25] D.-Y. Liao, M.-D. Jeng, and M. Zhou, “Application of petri nets and
lagrangian relaxation to scheduling automatic material-handling
vehicles in 300-mm semiconductor manufacturing,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 37, no. 4, pp. 504–516, 2007.

[26] R. Nakamura, K. Sawada, S. Shin, K. Kumagai, and H. Yoneda,
“Model reformulation for conflict-free routing problems using petri
net and deterministic finite automaton,” Artificial Life and Robotics,
vol. 20, no. 3, pp. 262–269, 2015.

[27] J.-W. Yang, H.-C. Cheng, T.-C. Chiang, and L.-C. Fu,
“Multiobjective lot scheduling and dynamic oht routing in a 300-mm
wafer fab,” in 2008 IEEE international conference on systems, man
and cybernetics. IEEE,2008, pp. 1608–1613.

[28] H.-W. Huang, C.-H. Lu, and L.-C. Fu, “Lot dispatching and
scheduling integrating oht traffic information in the 300mm wafer
fab,” in 2007 IEEE International Conference on Automation Science
and Engineering. IEEE, 2007, pp. 495–500.

[29] S. Lee, J. Lee, and B. Na, “Practical routing algorithm using a
congestion monitoring system in semiconductor manufacturing,”
IEEE Transactions on Semiconductor Manufacturing, vol. 31, no. 4,
pp. 475–485, 2018.

[30] K. Bartlett, J. Lee, S. Ahmed, G. Nemhauser, J. Sokol, and B. Na,
“Congestion-aware dynamic routing in automated material handling
systems,” Computers & Industrial Engineering, vol. 70, pp. 176–182,
2014.

[31] J. Boyan and M. Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach,” Advances in neural
information processing systems, vol. 6, 1993.

[32] S. Choi and D.-Y. Yeung, “Predictive q-routing: A memory-based
reinforcement learning approach to adaptive traffic control,”
Advances in Neural Information Processing Systems, vol. 8, 1995.

[33] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under
reward transformations: Theory and application to reward shaping,”
in Icml, vol. 99, 1999, pp. 278–287.

[34] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information
processing systems, vol. 30, 2017.

[35] P. Veliˇckovi ́c, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y.
Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[36] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” arXiv preprint arXiv:1511.05952, 2015.

[37] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W.
Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” in
Thirty-second AAAI conference on artificial intelligence, 2018

	I. INTRODUCTION
	II. Literature Review
	A. Pickup and delivery problem with time windows
	B. Routing algorithm for the AGV system
	C. Routing algorithm for the OHT system

	III. Method
	A. Route Selection Method: Q Routing
	B. Description of the GNN predictive model
	C. Data extraction and preprocessing
	D. Additional methods to increase performance

	IV. Numerical Experiments
	A. Model without PER using a uniform dataset
	B. Model with PER using a cut entire dataset

	V. Conclusion
	References

