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Abstract— Overhead hoist transport (OHT) systems are the 

primary systems used for the automated transportation of 

parts and materials in contemporary semiconductor 

fabrication facilities (FABs). OHT systems must be 

continuously monitored for the presence of abnormalities, so 

that these can be rapidly repaired to maintain system 

reliability. Since the OHT system is dynamic, it has various 

operational states such as driving and loading/unloading. 

Given that the operation of an OHT system depends on its 

state, this paper presents a framework for detecting anomalies 

in an OHT system according to state information. In 

particular, we describe a novel conditional recurrent 

autoencoder (CRAE) that can leverage its conditional input 

structure to process sensor data according to an OHT system’s 

state. The performance of our CRAE-based method was 

verified with data collected from an OHT system test-bed, 

which showed that it effectively detected various state-

dependent anomalies in this model OHT system. 

Keywords: OHT, anomaly detection, condition-based 

maintenance, autoencoder. 

I. INTRODUCTION 

The rapid and reliable transport of semiconductor wafers 
in contemporary semiconductor fabrication facilities (FABs) 
is underpinned by the interconnectedness of semiconductor 
manufacturing processes, which is achieved by the use of an 
overhead hoist transport (OHT) system that consists of OHT 
vehicles and a rail track system (hereinafter denoted 
“tracks”). OHT vehicles transport wafer-loaded front-
opening unified pods (FOUPs) along the tracks from one 
machine to the next in a FAB, and load or unload their FOUP 
into a station or side-track buffer (STB). A station is the 
loading or unloading port for FOUP cargo, while the STB is 
a temporary storage place for a FOUP when the port is full. 
At a station, a component of an OHT vehicle called a hoist 
moves up and down to perform tasks, whereas, at the STBs, 
a component called a slide moves left and right to perform 
tasks. 

The failure of an OHT system decreases the production 
rate of an entire manufacturing system, and therefore the 
condition of an OHT system must be continuously 
monitored to detect problems and thus enable their rapid 
resolution. Currently, OHT systems are typically maintained 
via a preventive approach, which is based on a checking 
system performance after predefined periods of operation 
rather than on a continuous, as-needed basis. In [1], an 
artificial neural network-based algorithm was developed to 
determine the real conditions of an OHT system using a 
measuring platform that captured three-dimensional data of 
power supply cables on the system’s tracks. In [2], 
researchers presented a method to measure the current 
condition of an OHT vehicle, which collects the sensor data 
of the vehicle and then automatically detects and reports its 
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abnormalities. In [2], a recurrent neural network-based 
autoencoder (RAE) was used to train the normal behavior of 
OHT vehicles. This generated a model that detected the 
current condition as abnormal if the online reconstruction 
error (RE) was above a given threshold. The results 
demonstrated that the RAE effectively processed the 
temporal sensor data of the OHT vehicles. 

However, these abovementioned approaches did not 
consider the heterogeneous characteristics of an OHT 
system, which are a result of its dynamicity: the behavior of 
an OHT system depends on the current tasks of OHT 
vehicles. For example, traveling vehicles are propelled by a 
drive motor, while vehicles loading or unloading their FOUP 
are propelled by a hoist motor or a slide motor. In a given 
driving state, the motion or vibration of an OHT vehicle 
varies with the shape of the track (which may be straight, a 
curve, or S-shaped). In addition, the loading/unloading state 
can also be a station loading/unloading state or an STB 
loading/unloading state, according to the location of the 
OHT vehicle and the motor involved. Furthermore, an OHT 
vehicle-mounted FOUP affects the torque of the motors and 
thus the operational states of the system. 

The state of an OHT vehicle dictates its behavior. This 
means that an OHT vehicle’s state must be considered when 
examining an OHT system for anomalies, as without this 
consideration, anomalous operations in one state cannot be 
distinguished from normal operations in another state. For 
example, OHT vehicle vibrations are greater when a vehicle 
is traveling on a curved track than when it is traveling on a 
straight track. Thus, when such vibrations increase when an 
OHT vehicle is traveling on a track, it is difficult to 
determine whether this increase is normal (as the vehicle is 
traveling on a curved track) or abnormal (as the vehicle is 
traveling on a straight track) unless the shape of the track is 
known. 
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An OHT management system (OMS) often 
misrecognizes an OHT vehicle’s location when the vehicle 
fails to read the location indicator in the system. This 
common abnormality of an OHT system causes errors in 
vehicle operations. For example, if the OMS incorrectly 
recognizes a curved-driving OHT vehicle to be on a straight 
track, it will not instruct a fast-traveling vehicle to slow 
down at the speed limit of the curved track, and thus the 
vehicle may derail. These cases of false state recognition are 
called state anomalies in this paper, and as state anomalies 
can lead to serious system failures, they must be detected as 
soon as they occur. This must be done by determining 
whether if the recognized state is consistent with the current 
sensor data. 

We address this need by developing a conditional 
recurrent autoencoder (CRAE) model for detecting 
anomalies in an OHT system by examining the system state. 
Our contributions are as follows. (1) We describe the need 
to consider system states for detecting anomalies in a 
dynamic system with various operating states. (2) We 
established a framework to identify the current state of an 
OHT vehicle from information managed by the OMS. (3) 
We develop a CRAE to process the recognized state together 
with the sensor data. (4) To validate the need to consider the 
state for anomaly detection, we designed several state-
dependent anomalies that can be collected from an actual 
OHT test-bed. (5) We verified the effectiveness of the 
conditional structure of the CRAE for detecting OHT system 
anomalies using system state information. 

II. LITERATURE REVIEW 

A. Anomaly Detection in Industrial Systems 

Anomaly detection has been widely applied to various 
industrial systems to prevent economic losses. It is also 
referred to as system fault detection or system diagnosis [3]. 
The data are generally in the form of sensor data, which are 
continuously monitored. Moreover, these are usually high-
dimensional data because they are collected over multiple 
channels to represent the system condition. Deep learning-
based models have been widely used in recent studies to 
manage these high-dimensional data. However, these deep 
learning techniques have been mainly applied to simple 
machinery or industrial systems without multiple 
operational states, such as wind turbines [4, 5], rotating 
mechanical parts [6–10], and other systems [11–14]. To 
apply anomaly detection in heterogeneous systems such as 
an OHT system, a structure that considers a system’s state is 
required. 

B.  Deep Learning Models with a Conditional Structure 

Some recent studies have shown that the conditional 
structure of a deep learning model can process input data 
according to additional contextual information. In [15], a 
conditional generative adversarial network (CGAN) was 
designed to generate new data conditioning based on 
additional contextual information such as class labels or data 
from other modalities. This CGAN performs conditioning 
by using the additional contextual information as an 
additional input layer in both the discriminator and generator. 
Several studies have used this model to generate additional 
abnormal data to address imbalance problems related to 
anomaly detection [16–18]. 

In [19], a conditional variational autoencoder (CVAE), 
which incorporates a conditional structure into an 

autoencoder (AE), was proposed. Similar to CGAN, CVAE 
can be implemented by feeding the additional contextual 
information into the encoder and decoder of the AE. 
Although the original CVAE was proposed to generate data, 
some studies have used CVAEs to detect anomalies in 
different contexts, given the effectiveness of AEs for 
anomaly detection. In [20], the authors used a CVAE to 
predict intrusion type for intrusion detection by integrating 
intrusion labels within the input layer of the decoder. 
Moreover, [21] detected anomalies of a complex muon 
solenoid trigger system by conditioning the trigger rate to 
consider that the second stage of the system was seeded by 
the trigger rate. In [22], a novel conditional convolutional 
AE (CCAE), which was based on the conditional structure 
of a CVAE, was developed for monitoring wind turbine 
blade breakages. In the CCAE, the conditional structure is 
applied to the AE with convolutional layers, and temporal 
sequence information is fed to the inputs of the encoder and 
decoder. As a result, the CCAE can detect breakages of the 
wind turbines according to the time of operation. 

Thus, as a conditional structure effectively processes 
data according to the additional contextual information, we 
applied it to the RAE, using the state information as the 
context vector. This CRAE model considers the operational 
state of an OHT system and can detect anomalies in the 
system by processing state information together with sensor 
data. We collected some actual anomalies of an OHT system 
to validate the performance of our model. Consequently, the 
model was able to detect various state-dependent anomalies. 

III. METHODOLOGY 

This section presents a CRAE-based monitoring method 
for detecting anomalies in an OHT system having various 
operational states. The overall framework is summarized in 
Fig. 2. First, the Internet of Things (IoT) sensor data of OHT 
vehicles are collected, and then used as the input of the 
anomaly detection model. We develop a method to identify 
the current operational state of a system from the OMS. The 
CRAE is trained to reconstruct the sensor data by being 
conditioned on state information. In the offline training 
phase, the CRAE stores the REs of the normal data 
according to their corresponding state. In the online 
monitoring phase after training, the CRAE reports an 
anomaly if the current RE exceeds the normal range 
constructed in the training phase. 

A.  Identification of Current Operational State 

 To reflect the operational state in the detection of 

anomalies in an OHT system, the current state of the system 

must be identified. First, driving and loading/unloading 

states can be identified by the OMS from the activity of 

motor controllers. Second, assuming that the map 

information is known, the type of track (straight/curve) at 

the current location can be determined by examining the last 

recognized location sign. This information can be used to 

distinguish between station loading/unloading and STB 

loading/unloading. Third, by examining the hoist motor 

controller data, the OMS can determine whether a vehicle 

is currently carrying an FOUP. Therefore, in this paper, the 

system state is classified a straight-track driving, curved-

track driving, slide operation (STB loading/ unloading), or 

hoist operation (station loading/unloading) state, and each 

state is further divided into an FOUP-equipped state or a 

non-FOUP-equipped state. Therefore, there are a total of 

eight states.
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B. Conditional Recurrent Autoencoder 

 We develop a CRAE, which is based on RAE 
architecture, to detect anomalies according to an OHT 
system’s operational state. The overall architecture of the 
CRAE is presented in Fig. 3. 

Consider an aggregated observation generated by the 
sliding window (SW) technique, 

𝐗 =  [X1, X2, … , Xt, … , 𝑋𝑇] ∈  ℝ𝑛×𝑇         (1) 

, where T  is the SW length, n  is the number of sensor 

channels, and  

X𝑡 = (xt
1; 𝑥𝑡

2; … ; 𝑥𝑡
𝑛) ∈ ℝ𝑛×1           (2) 

is the observation of sensors at the singular timestamp t. As 
shown in the figure, a context vector C is also fed as the 
inputs of the encoder and decoder of the CRAE. The context 
vector is a one-hot vector of the length of the number of 
states, and corresponds to the current operational state. Each 

recurrent neural network (RNN) cell in the encoder at the 
time stamp t takes the concatenated input   

Yt = [Xt; C] ∈ ℝ(𝑛+𝑘)×1             (3) 

, where k is the length of the context vector. Similarly, each 
cell in the decoder takes the input  

IT  =  [hT; C] ∈ ℝ(𝑙+𝑘)×1             (4) 

, where l is the length of the hidden output hT. Therefore, the 
encoder and decoder of the CRAE with RNN cells can be 
illustrated as follows: 

ht = 𝑓(𝑊𝑒𝑛𝑐𝑌𝑡 + 𝑈𝑒𝑛𝑐ℎ𝑡−1 + 𝑏𝑒𝑛𝑐)        (5) 

st = 𝑓(𝑊𝑑𝑒𝑐𝐼𝑇 + 𝑈𝑒𝑛𝑐𝑠𝑡−1 + 𝑏𝑑𝑒𝑐)         (6) 

, where Wenc ∈ ℝ𝑙×(𝑛+𝑘) , Uenc ∈ ℝ𝑙×𝑙 and benc ∈ ℝ𝑙×1 

represent the weight and bias of each RNN cell in the 

encoder, and Wdec ∈ ℝ𝑙×(𝑙+𝑘) , Udec ∈ ℝ𝑙×𝑙 and bdec ∈
ℝ𝑙×1 are the weight and bias of the decoder. To realize the 

conditional structure, CRAE reconstructs the original sensor 

input Xt only, without state information C: 

�̂�𝑡 = 𝑊𝑜𝑢𝑡𝑠𝑡 + 𝑏𝑜𝑢𝑡               (7) 

, where Wout ∈ ℝ𝑛×𝑙  and bout ∈ ℝ𝑛×1  are the weight and 
bias of the output layer. Therefore, the RE of CRAE is 
expressed as that of the RAE: 

L(W, b, U) =
1

T
∑ ‖𝑋𝑡 − �̂�𝑡‖

2𝑇
𝑡=1           (8) 

With this architecture, the CRAE can process sensor data 
conditioning based on state information. Thus, the CRAE 
can detect anomalies in an OHT system by considering the 
sensor data with reference to the current operational state of 
the system. 

C. Anomaly Detection Based on CRAE 

As discussed above, the RE generated by the CRAE can 
be considered the anomaly score of an observation. Because 

Figure 2. CRAE-based monitoring framework for detecting anomalies in OHT systems. 

Figure 3. CRAE architecture. 
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the range of REs varies with operational state owing to the 
dynamic nature of OHT systems, we develop various 
thresholds for anomaly detection in different states. During 
the training phase, the REs of the training data are stored in 
terms of their states. Because all training data are considered 
normal, we assume that the errors obtained at this phase form 
a range of normal REs. In the detection phase, our CRAE 
model regards an observation as anomalous if its RE exceeds 
this range. Specifically, an observation is considered 
anomalous if its RE is greater than the threshold for the 
corresponding state i ∈ 1, … , k : 

Thi = max 𝑅𝐸(𝑐𝑖) + 𝑙𝑖             (9) 

, where li is a constant for sensitivity control for the ith state. 
The level of sensitivity control may vary depending on the 
FAB or situation.  

IV. EXPERIMENT AND RESULTS 

This section introduces an experiment we performed to 
evaluate our framework for anomaly detection in an OHT 
system. We adopted the RAE used in [2] as the main 
benchmark model to verify the ability of the CRAE to 
consider the state of a system. 

A. Laboratory Environment 

The experiment was conducted in a laboratory model of 
an actual semiconductor FAB. It contained a 50 m rail track, 
four OHT vehicles, three stations, and 14 STBs. The track 
consisted of straight and arced section, which means that the 
OHT vehicles could exist in one of two states: a straight-
track driving state and a curved-track driving state. Fig. 4 
illustrates the laboratory environment in detail. We 
embedded an IoT platform in the OHT vehicles to collect 
relevant sensor data. 

B. Data Description 

The collected sensor data consisted of 12 channels: 
vibrations in the x-, y-, and z-directions (X root-mean-square 
(RMS), Y RMS, and Z RMS, respectively); yaw (Yaw); and 
the speed and torque of the front wheels (Front SP, Front 
TQ), rear wheels (Rear SP, Rear TQ), hoist (Hoist SP, Hoist 
TQ), and slide (Slide SP, Slide TQ). 

We first collected training data to train our model. These 
training data were normal data (for OHT vehicles driving 
normally), as the CRAE model was used in a semi-
supervised manner. Data corresponding to the static state of 
a vehicle were excluded because these data were identical in 
normal and abnormal conditions. Because each sensor 
channel had a different range, it was normalized from 0 to 1 
according to the minimum and maximum values of the 
training data. Fig. 5 shows the normalized samples for 
various operating states under normal conditions. 

Because Yaw, Hoist SP, and Slide SP had symmetric 
values for 0, their values of approximately 0.5 in the 
normalized sample indicated a static state. The closer the 
value was to 0 or 1, the greater the absolute value was in a 
different direction. For example, a Yaw value close to 1 
indicated a left turn, whereas a value close to 0 indicated a 
right turn. Similarly, a Hoist SP or Slide SP value close to 1 

indicated an extension motion, whereas a value close to 0 
indicated a retraction motion. 

Because the behaviors of the OHT vehicles were state- 
dependent, the sensor data were also state-dependent. For 
example, the Yaw value was close to 0.5 when an OHT 
vehicle traveled on straight tracks (Fig. 5a), whereas it 
approached 1 or 0 as an OHT vehicle traveled on curved 
tracks (Fig. 5b). In addition, when an OHT vehicle 
loaded/unloaded a FOUP at a station, its Front SP and Rear 
SP values remained almost equal to 0, but its Hoist SP and 
Hoist TQ values deviated from the static state (Fig. 5c). 
Similarly, its Slide SP and the Slide TQ values deviated from 
0.5 in the STB loading/unloading state (Fig. 5d). 

In addition, we collected test data to evaluate the 
anomaly detection performance of our model and a 
benchmark model. Unlike the training data, the test data 
consisted of both normal and abnormal data, and the purpose 
of the models was to distinguish these two data. The normal 
test data were collected in the same way as the training data. 
We collected abnormal data of several state-dependent 
anomalies to evaluate the ability of the model to consider the 
following states: Obstacles on a Straight Track, Increased 
Hoist Torque without an FOUP, Driving on a Straight Track 
+ a Curved State, Driving on a Curved Track + a Straight 
State, and STB Operation + a Straight State. 

First, the Obstacles on a Straight Track scenario 
indicated the data of OHT vehicles driving on straight tracks 
with obstacles. To reproduce this scenario, we added thin 
pieces of paper onto the track; the wheels of the OHT 
vehicles rattled as they traveled over this paper, resulting an 
increase in the vehicle vibration. Our model needed to be 
able to distinguish this scenario from normal curved-track 
driving because the vibrations occurring during curved-track 
driving are greater than those occurring during straight-track 
driving. Next, the Increased Hoist Torque without an FOUP 
scenario represents an increase in hoist torque occurring 
when the hoist was not holding an FOUP. This is because an 
increase in the hoist torque when the hoist moves without an 
FOUP indicates a defect in the hoist motor. This scenario 
cannot be distinguished from normal FOUP lifting without 
knowledge on the absence of an FOUP. Fig. 6 shows the 
normalized abnormal samples for each scenario. In the 
Obstacles on a Straight Track scenario (Fig. 6a), the RMS 
values related to vibration were greater than those of normal 
driving. Furthermore, in the Increased Hoist Torque without 
an FOUP scenario, the Hoist TQ value was higher than that 
under normal hoist operation (Fig. 6b).

Figure 2. Laboratory environment for the OHT system. 
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The last three scenarios represent state anomalies 
indicating cases where an OMS misrecognize an OHT 
vehicle’s state. The first example of a state anomaly is the 
case of straight-track driving being recognized as curved-
track driving (Straight Driving + a Curved State). We 

reproduced this scenario by manually combining the sensor 
data of normal straight-track driving with the state label of 
curved-track driving. The second example is the opposite 
case; that is, the sensor data of normal curved-track driving 
being recognized as straight-track driving (Curved Driving 
+ a Straight State). These two cases often occur in actual 
FABs when an OHT vehicle fails to read the location sign 
of a control point on the track. The last example is a case of 
slide operation with a label of straight-track driving (Slide 
Operation + a Straight State). Although this scenario does 
not occur in actual FABs, we included this example to 
validate the performance of the models with a variety of 
examples. In these three cases, the sensor data are identical 
to normal data if system state information is not considered. 

C. Model Establishment 

For each dataset presented, the sampling frequency and 
SW size are 100 Hz and 100, respectively; therefore, the 
length of each data instance is 1s. We use 256 as the batch 
size and 100 as the number of epochs. The number of 
hidden units, learning rate, and RNN cell type are selected 
to be values with a minimum mean error for validation data. 
Hyperparameter tuning is conducted over the number of 
hidden units l ∈  {64, 128, 256},  learning rates  ∈
 {0.0001, 0.0005, 0.001}, and RNN types ∈ {RNN, LSTM, 
GRU}. For both RAE and CRAE, the number of hidden 
units, learning rate, and RNN cell type are 256, 0.001, and 
long short-term memory (LSTM) cell, respectively. The 
major hyperparameters for each model are summarized in 
Table I. 

The rectified linear unit is used as an activation function 
between hidden layers, and no activation is used for the 
final layer because this might limit the range of 
reconstructed values, which is not desirable for detecting 
anomalies with extreme values. All experiments were run 
in Python with the CUDA version 10.1 and PyTorch 1.7.1. 

(a) (b) 

(c) (d) 

Figure 3. Normalized normal samples for different states with each relevant sensor channel indicated: (a) a straight-track driving state; (b) a curved-

track driving state; (c) a station loading/unloading state; and (d) an STB loading/unloading state 

(a) 

(b) 
Figure 6. Normalized abnormal samples for each scenario with 

representative sensor channels indicated: (a) obstacles on a straight track; 
and (b) increased hoist torque without an FOUP. 
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TABLE I 
MAJOR HYPERPARAMETERS FOR THE BEST MODELS  

OF EACH TYPE 

 

Hyperparameters RAE CRAE 

Sliding window size 100 

Batch size 64 

Epochs 100 

Hidden units 256 256 

Learning rate 0.001 0.001 

RNN cell type LSTM LSTM 

 

TABLE Ⅱ 
AUROC COMPARISON OF RAE AND CRAE 

 

Abnormal Scenario RAE CRAE 

Obstacles on a Straight Track 0.8753 0.9014 

Increased Hoist TQ without an FOUP 0.4947 0.9083 

Straight Driving + Curved State 0.4397 1.0000 

Curved Driving + Straight State 0.5369 0.9983 

Slide Operation + Straight State 0.4956 0.9953 

  

TABLE Ⅲ 
AVERAGE LOSS  

(ABNORMAL DATA ARE DENOTED AS *) 
  

Abnormal Scenario RAE CRAE 

Normal Straight Driving 0.00039 0.00043 

Obstacles on a Straight Track* 0.00116 0.00128 

Straight Driving + Curved State* 0.00037 0.02068 

Normal Curved Driving 0.00183 0.00146 

Curved Driving + Straight State* 0.00131 0.00339 

Normal Hoist Operation 0.00035 0.00041 

Increased Hoist TQ without FOUP* 0.00036 0.00125 

Normal Slide Operation 0.00152 0.00158 

Slide Operation + Straight State* 0.00152 0.01430 

 D. Performance Analysis 

As the sensitivity control level may vary between FABs, 
the area under the receiver operating curve (AUROC) value, 
which is independent of a particular threshold, was used as 
a performance metric. The AUROC values of the RAE and 
CRAE are summarized in Table II. The AUROC value for 
each scenario was obtained relative to the relevant normal 
state. The average losses of each abnormal scenario and its 
relevant normal state are also presented in Table III for 
reference. 

In all scenarios of anomaly detection, the CRAE model 
showed higher AUROC values than the RAE model (Table 
II). The AUROC difference was smaller in the Obstacles on 
a Straight Track scenario because the Yaw value of the 
sensor data can reflect the context of straight-track driving 
in the RAE model; however, the CRAE model showed a 
higher AUROC value by directly determining the context. 

 

 

(a) 

(b) 

Figure 7. Visualization of input and reconstruction for Straight Driving 

+ Curved State scenario by (a) the RAE model; and (b) the CRAE 
model. 

Figure 4. Visualization of input and reconstruction for Curved Driving 

+ Straight State scenario by the CRAE model. 

Figure 9. Visualization of input and reconstruction for Slide Operation 

+ Straight State scenario by the CRAE model. 
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Moreover, the RAE model did not detect any state 
anomalies, because it did not consider any information 
about the states, whereas the CRAE model detected all state 
anomalies with very high AUROC values. To investigate 
the difference in detail, Fig. 7 illustrates an input sample 
(blue line) of the Straight Driving + Curved State data and 
the reconstructions (orange line) generated by the RAE and 
CRAE models. As can be seen, the RAE model did not 
detect this scenario as abnormal and reconstructed the data 
close to the input as normal straight-track driving data. In 
contrast, the CRAE model reconstructed the input data to 
match the assigned curved-track driving state, which 
resulted in a high reconstruction loss. In particular, the 
CRAE model reconstructed the Yaw value to be close to 1, 
which represented the state of curved-track driving. This 
shows that the CRAE model properly considered state 
information in learning the latent representation of the input 
data. Similarly, the CRAE model reconstructed the Curved 
Driving + Straight State data as straight-track driving by 
reconstructing Yaw to be close to 0.5 (static state) (Fig. 8). 
In the Slide Loading + Straight State scenario, the speed and 
torque of the slide motor were reconstructed as the static 
state by the CRAE model, which corresponds to the state of 
straight-track driving (Fig. 9). 

E. Comparison with Conventional Methods 

To further investigate the effectiveness of the CRAE 
structure in considering the additional contextual 
information, we compared the performance of our CRAE 
model with those of conventional anomaly detection 
methods: principal component analysis (PCA), k-nearest 
neighbors (KNN), feature bagging (FB), isolation forest 
(IF), and a one-class support vector machine (OC-SVM). 
As these conventional methods are designed to fit one-
dimensional inputs, the aggregated observation XT ∈
ℝ𝑛×𝑇 is flattened into a one-dimensional vector as follows: 

X = [x1
1, … , 𝑥𝑇

1 , 𝑥1
2, … , 𝑥𝑇

2, … , 𝑥1
𝑛, … , 𝑥𝑇

𝑛]𝑇 ∈ ℝ𝑛𝑇×1  (10) 

We use the concatenated input of this flattened sensor 

vector and the state vector, [X ; C] ∈  ℝ(𝑛𝑇+𝑘)×1 as the input 

of each method. The AUROCs are compared in Table IV. 
The CRAE model outperformed the other conventional 
methods. Therefore, the CRAE structure effectively 
considers additional contextual information rather than 
simply processing a combination of the flattened sensor 
vector and a state vector. 

V.  CONCLUSION 

In modern FABs, semiconductor wafers are transported 
automatically on OHT systems. The failure of an OHT 
system interferes with the entire production line, and thus 
such systems must be continuously monitored so that 
anomalies can be rapidly detected and rectified. An OHT 
system also has various operating states, on which its 
behavior depends; thus, an OHT system’s operating state 
should be considered in the process of system anomaly 
detection. Hence, we developed a CRAE model by 
incorporating a conditional structure into an RAE. To 
validate the performance of the CRAE model, we collected 
data for various abnormal scenarios in an actual OHT 
system test-bed. The CRAE model processed sensor data 
for these scenarios with consideration of the system state, 
and thus detected all state-dependent anomalies. 

Future studies could employ various factors other than 
the states used in this study as the conditional input. For 
example, the tracks in FABs can be further subdivided 
according to their length, speed limits, and curvature. In 
addition, the identification number of OHT vehicles could 
be applied as a conditional input to address the individual 
characteristics of each vehicle. Furthermore, the CRAE 
model could be applied to other systems with multiple 
operational states, such as automated guided vehicle 
systems or stocker systems. 
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TABLE IV 
AVERAGE LOSS (ABNORMAL DATA ARE DENOTED AS *) 

 

Abnormal Scenario PCA KNN FB IF HBOS 
OC- 
SVM 

CRAE 

Obstacles on a Straight Track 0.6961 0.6202 0.7936 0.7876 0.8048 0.6546 0.9014 

Increased Hoist TQ without an FOUP 0.3789 0.8651 0.4598 0.394 0.4227 0.2415 0.9083 

Straight Driving + Curved State 0.4550 0.7713 0.9515 0.4483 0.4016 0.6546 1.0000 

Curved Driving + Straight State 0.4802 0.6620 0.5608 0.5421 0.4819 0.5144 0.9983 

Slide Operation + Straight State 0.7760 0.7419 0.3727 0.6243 0.5351 0.3850 0.9953 
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