Exploring Opportunities and Challenges of SRAM Based on 2D-Material FETs

Vita Pi-Ho Hu
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
*Email: vitahu@ntu.edu.tw

Two-dimensional transition metal dichalcogenides (2D TMDs) show promise for highly scaled logic transistors, leveraging their ultrathin profile and exceptional electrostatic control capabilities. Two-dimensional material (2DM)-based FETs have made significant strides in recent years, with advancements in wafer-scale monocrystalline growth, metal-2DM contact resistance, dielectrics, and back-end-of-line (BEOL) integration [1-3]. BEOL-compatible MOS transistors with a low thermal budget enable monolithic 3D (M3D) integrations for System-on-Chip (SoC) scaling. Potential channel materials exist for top-tier BEOL-compatible transistors, including two-dimensional materials, metal oxide semiconductors, carbon nanotubes, recrystallized Si, etc. [4-9]. Various device structures, including back-gated (BG), double gate (DG), and gate-all-around (GAA), are explored to enhance the driving capability of BEOL-compatible transistors.

In this presentation, I will discuss M3D SRAM cells with front-end-of-line (FEOL) Si FinFETs and BEOL 2DM FETs. I will discuss two M3D SRAM scenarios, including (1) 3DPG_{BEOL} and 3DPU_{BEOL} SRAM cells. The 3DPG_{BEOL} SRAM incorporates BEOL pass-gate (PG) nFETs combined with FEOL pull-down (PD) nFETs and pull-up (PU) pFETs. On the other hand, the 3DPU_{BEOL} considers BEOL PU pFETs combined with FEOL PD/PG nFETs. Through iterative electrical-thermal simulations [10], we demonstrate the on-current criteria (I_{oncrit} = I_{onBEOL}/I_{onFEOL}), defined as the I_{on} ratio of BEOL transistor to FEOL PD nFET for adequate read and write stability. A higher I_{oncrit} (89%) for 3DPG_{BEOL} SRAM is essential to mitigate read and write conflicts. In comparison to conventional 2D Si FinFET SRAM, the 3DPU_{BEOL} SRAM exhibits (a) a low I_{oncrit} (= 12.4%), (b) reduced cell area (-20.2%), (c) enhanced write stability (+70%), and (d) improved read (-15%) and write (-23%) speeds. Our results offer valuable insights into optimizing BEOL 2DM transistors for M3D integrations.

Acknowledgments

This work was supported by the National Science and Technology Council (NSTC) in Taiwan under Grants NSTC 112-2223-E-002-011-MY3 and NSTC 112-2218-E-002-028.

References


